node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Casq1 | Jph4 | ENSMUSP00000003554 | ENSMUSP00000022819 | Calsequestrin-1; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions (By similarity). Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction. Negatively regulates store-operated Ca(2+) entry (SOCE) activity (By similarity). | Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. | 0.425 |
Casq1 | Stim1 | ENSMUSP00000003554 | ENSMUSP00000033289 | Calsequestrin-1; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions (By similarity). Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction. Negatively regulates store-operated Ca(2+) entry (SOCE) activity (By similarity). | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.704 |
Cracr2b | Efhb | ENSMUSP00000055899 | ENSMUSP00000024725 | EF-hand calcium-binding domain-containing protein 4A; Plays a role in store-operated Ca(2+) entry (SOCE). | EF-hand domain-containing family member B; Cytosolic sensor for calcium, modulates the interaction of STIM1 and ORAI1 upon store depletion, the activation of store-operated Ca(2+) entry (SOCE) and NFAT translocation from cytosol to nucleus. | 0.549 |
Cracr2b | Saraf | ENSMUSP00000055899 | ENSMUSP00000033933 | EF-hand calcium-binding domain-containing protein 4A; Plays a role in store-operated Ca(2+) entry (SOCE). | Store-operated calcium entry-associated regulatory factor; Negative regulator of store-operated Ca(2+) entry (SOCE) involved in protecting cells from Ca(2+) overfilling. In response to cytosolic Ca(2+) elevation after endoplasmic reticulum Ca(2+) refilling, promotes a slow inactivation of STIM (STIM1 or STIM2)- dependent SOCE activity: possibly act by facilitating the deoligomerization of STIM to efficiently turn off ORAI when the endoplasmic reticulum lumen is filled with the appropriate Ca(2+) levels, and thus preventing the overload of the cell with excessive Ca(2+) ions (By similar [...] | 0.734 |
Cracr2b | Stim1 | ENSMUSP00000055899 | ENSMUSP00000033289 | EF-hand calcium-binding domain-containing protein 4A; Plays a role in store-operated Ca(2+) entry (SOCE). | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.860 |
Efhb | Cracr2b | ENSMUSP00000024725 | ENSMUSP00000055899 | EF-hand domain-containing family member B; Cytosolic sensor for calcium, modulates the interaction of STIM1 and ORAI1 upon store depletion, the activation of store-operated Ca(2+) entry (SOCE) and NFAT translocation from cytosol to nucleus. | EF-hand calcium-binding domain-containing protein 4A; Plays a role in store-operated Ca(2+) entry (SOCE). | 0.549 |
Efhb | Saraf | ENSMUSP00000024725 | ENSMUSP00000033933 | EF-hand domain-containing family member B; Cytosolic sensor for calcium, modulates the interaction of STIM1 and ORAI1 upon store depletion, the activation of store-operated Ca(2+) entry (SOCE) and NFAT translocation from cytosol to nucleus. | Store-operated calcium entry-associated regulatory factor; Negative regulator of store-operated Ca(2+) entry (SOCE) involved in protecting cells from Ca(2+) overfilling. In response to cytosolic Ca(2+) elevation after endoplasmic reticulum Ca(2+) refilling, promotes a slow inactivation of STIM (STIM1 or STIM2)- dependent SOCE activity: possibly act by facilitating the deoligomerization of STIM to efficiently turn off ORAI when the endoplasmic reticulum lumen is filled with the appropriate Ca(2+) levels, and thus preventing the overload of the cell with excessive Ca(2+) ions (By similar [...] | 0.664 |
Homer1 | Homer2 | ENSMUSP00000078093 | ENSMUSP00000146787 | Homer protein homolog 1; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Differentially regulates the functions of the calcium activated channel ryanodine receptors RYR1 and RYR2. Isoform 1 decreases the acti [...] | Homer protein homolog 2; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2 (By similarity). Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity) Required for normal hearing. Negatively regula [...] | 0.931 |
Homer1 | Homer3 | ENSMUSP00000078093 | ENSMUSP00000105751 | Homer protein homolog 1; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Differentially regulates the functions of the calcium activated channel ryanodine receptors RYR1 and RYR2. Isoform 1 decreases the acti [...] | Homer protein homolog 3; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFA [...] | 0.838 |
Homer1 | Stim1 | ENSMUSP00000078093 | ENSMUSP00000033289 | Homer protein homolog 1; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Differentially regulates the functions of the calcium activated channel ryanodine receptors RYR1 and RYR2. Isoform 1 decreases the acti [...] | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.494 |
Homer2 | Homer1 | ENSMUSP00000146787 | ENSMUSP00000078093 | Homer protein homolog 2; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2 (By similarity). Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity) Required for normal hearing. Negatively regula [...] | Homer protein homolog 1; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Differentially regulates the functions of the calcium activated channel ryanodine receptors RYR1 and RYR2. Isoform 1 decreases the acti [...] | 0.931 |
Homer2 | Homer3 | ENSMUSP00000146787 | ENSMUSP00000105751 | Homer protein homolog 2; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2 (By similarity). Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity) Required for normal hearing. Negatively regula [...] | Homer protein homolog 3; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFA [...] | 0.428 |
Homer3 | Homer1 | ENSMUSP00000105751 | ENSMUSP00000078093 | Homer protein homolog 3; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFA [...] | Homer protein homolog 1; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Differentially regulates the functions of the calcium activated channel ryanodine receptors RYR1 and RYR2. Isoform 1 decreases the acti [...] | 0.838 |
Homer3 | Homer2 | ENSMUSP00000105751 | ENSMUSP00000146787 | Homer protein homolog 3; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFA [...] | Homer protein homolog 2; Postsynaptic density scaffolding protein. Binds and cross- links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER- associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2 (By similarity). Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses (By similarity) Required for normal hearing. Negatively regula [...] | 0.428 |
Jph4 | Casq1 | ENSMUSP00000022819 | ENSMUSP00000003554 | Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. | Calsequestrin-1; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions (By similarity). Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction. Negatively regulates store-operated Ca(2+) entry (SOCE) activity (By similarity). | 0.425 |
Jph4 | Saraf | ENSMUSP00000022819 | ENSMUSP00000033933 | Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. | Store-operated calcium entry-associated regulatory factor; Negative regulator of store-operated Ca(2+) entry (SOCE) involved in protecting cells from Ca(2+) overfilling. In response to cytosolic Ca(2+) elevation after endoplasmic reticulum Ca(2+) refilling, promotes a slow inactivation of STIM (STIM1 or STIM2)- dependent SOCE activity: possibly act by facilitating the deoligomerization of STIM to efficiently turn off ORAI when the endoplasmic reticulum lumen is filled with the appropriate Ca(2+) levels, and thus preventing the overload of the cell with excessive Ca(2+) ions (By similar [...] | 0.410 |
Jph4 | Stim1 | ENSMUSP00000022819 | ENSMUSP00000033289 | Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.717 |
Nfatc3 | Stim1 | ENSMUSP00000104931 | ENSMUSP00000033289 | Nuclear factor of activated T-cells, cytoplasmic 3; Acts as a regulator of transcriptional activation. Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (By similarity). Along with NFATC4, involved in embryonic heart development. | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.494 |
Saraf | Cracr2b | ENSMUSP00000033933 | ENSMUSP00000055899 | Store-operated calcium entry-associated regulatory factor; Negative regulator of store-operated Ca(2+) entry (SOCE) involved in protecting cells from Ca(2+) overfilling. In response to cytosolic Ca(2+) elevation after endoplasmic reticulum Ca(2+) refilling, promotes a slow inactivation of STIM (STIM1 or STIM2)- dependent SOCE activity: possibly act by facilitating the deoligomerization of STIM to efficiently turn off ORAI when the endoplasmic reticulum lumen is filled with the appropriate Ca(2+) levels, and thus preventing the overload of the cell with excessive Ca(2+) ions (By similar [...] | EF-hand calcium-binding domain-containing protein 4A; Plays a role in store-operated Ca(2+) entry (SOCE). | 0.734 |
Saraf | Efhb | ENSMUSP00000033933 | ENSMUSP00000024725 | Store-operated calcium entry-associated regulatory factor; Negative regulator of store-operated Ca(2+) entry (SOCE) involved in protecting cells from Ca(2+) overfilling. In response to cytosolic Ca(2+) elevation after endoplasmic reticulum Ca(2+) refilling, promotes a slow inactivation of STIM (STIM1 or STIM2)- dependent SOCE activity: possibly act by facilitating the deoligomerization of STIM to efficiently turn off ORAI when the endoplasmic reticulum lumen is filled with the appropriate Ca(2+) levels, and thus preventing the overload of the cell with excessive Ca(2+) ions (By similar [...] | EF-hand domain-containing family member B; Cytosolic sensor for calcium, modulates the interaction of STIM1 and ORAI1 upon store depletion, the activation of store-operated Ca(2+) entry (SOCE) and NFAT translocation from cytosol to nucleus. | 0.664 |