| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| Trpc1 | Trpc3 | ENSMUSP00000139672 | ENSMUSP00000029271 | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | 0.924 |
| Trpc1 | Trpc4 | ENSMUSP00000139672 | ENSMUSP00000029311 | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | 0.998 |
| Trpc1 | Trpc5 | ENSMUSP00000139672 | ENSMUSP00000049063 | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | 0.998 |
| Trpc1 | Trpc6 | ENSMUSP00000139672 | ENSMUSP00000057965 | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | 0.808 |
| Trpc3 | Trpc1 | ENSMUSP00000029271 | ENSMUSP00000139672 | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | 0.924 |
| Trpc3 | Trpc4 | ENSMUSP00000029271 | ENSMUSP00000029311 | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | 0.970 |
| Trpc3 | Trpc5 | ENSMUSP00000029271 | ENSMUSP00000049063 | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | 0.873 |
| Trpc3 | Trpc6 | ENSMUSP00000029271 | ENSMUSP00000057965 | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | 0.934 |
| Trpc3 | Trpc7 | ENSMUSP00000029271 | ENSMUSP00000022023 | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | Short transient receptor potential channel 7; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG). May also be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC7 sub-subfamily. | 0.811 |
| Trpc4 | Trpc1 | ENSMUSP00000029311 | ENSMUSP00000139672 | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | 0.998 |
| Trpc4 | Trpc3 | ENSMUSP00000029311 | ENSMUSP00000029271 | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | 0.970 |
| Trpc4 | Trpc5 | ENSMUSP00000029311 | ENSMUSP00000049063 | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | 0.995 |
| Trpc5 | Trpc1 | ENSMUSP00000049063 | ENSMUSP00000139672 | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | 0.998 |
| Trpc5 | Trpc3 | ENSMUSP00000049063 | ENSMUSP00000029271 | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | 0.873 |
| Trpc5 | Trpc4 | ENSMUSP00000049063 | ENSMUSP00000029311 | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | Short transient receptor potential channel 4; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Has also been shown to be calcium- selective (By similarity). May also be activated by intracellular calcium store depletion. Trpc4 deficient mice lack a store-operated calcium entry in endothelial cells. | 0.995 |
| Trpc5 | Trpc6 | ENSMUSP00000049063 | ENSMUSP00000057965 | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | 0.566 |
| Trpc6 | Trpc1 | ENSMUSP00000057965 | ENSMUSP00000139672 | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. | 0.808 |
| Trpc6 | Trpc3 | ENSMUSP00000057965 | ENSMUSP00000029271 | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 (By similarity). May also be activated by internal calcium store depletion. Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC [...] | 0.934 |
| Trpc6 | Trpc5 | ENSMUSP00000057965 | ENSMUSP00000049063 | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective. May also be activated by intracellular calcium store depletion. | 0.566 |
| Trpc6 | Trpc7 | ENSMUSP00000057965 | ENSMUSP00000022023 | Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion. | Short transient receptor potential channel 7; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG). May also be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC7 sub-subfamily. | 0.697 |