STRINGSTRING
Sgpl1 Sgpl1 Cth Cth Alas1 Alas1 Shmt1 Shmt1 Sptlc2 Sptlc2 Sptlc1 Sptlc1 Agxt2 Agxt2 Got1l1 Got1l1 Gcat-2 Gcat-2 Phykpl Phykpl Ddc Ddc Gpt2 Gpt2 Abat Abat Mocos Mocos Alas2 Alas2 Etnppl Etnppl Gpt Gpt Gadl1 Gadl1 Gcat Gcat Tat Tat Sptlc3 Sptlc3 Aadat Aadat Oat Oat Got2 Got2 Tha1 Tha1 Sepsecs Sepsecs Nfs1 Nfs1 Hdc Hdc Kynu Kynu Gad2 Gad2 Scly Scly Agxt Agxt Shmt2 Shmt2 Got1 Got1 Gldc Gldc Psat1 Psat1 Csad Csad Pdxdc1 Pdxdc1 Gad1 Gad1 Accsl Accsl Kyat3 Kyat3 Accs Accs Kyat1 Kyat1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Sgpl1Sphingosine-1-phosphate lyase 1; Cleaves phosphorylated sphingoid bases (PSBs), such as sphingosine-1-phosphate, into fatty aldehydes and phosphoethanolamine. Elevates stress-induced ceramide production and apoptosis. Required for global lipid homeostasis in liver and cholesterol homeostasis in fibroblasts. Involved in the regulation of pro- inflammatory response and neutrophil trafficking. Modulates neuronal autophagy via phosphoethanolamine production which regulates accumulation of aggregate-prone proteins such as APP. Seems to play a role in establishing neuronal contact sites and [...] (568 aa)
CthCystathionine gamma-lyase; Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration of target protei [...] (398 aa)
Alas15-aminolevulinate synthase, nonspecific, mitochondrial; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. (642 aa)
Shmt1Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine. (478 aa)
Sptlc2Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate (By similarity). Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis. (560 aa)
Sptlc1Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1- SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates. The SPTLC1-SPTLC2-SPTSSB complex displays a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme has the ability to use a broader range of acyl-CoAs (By [...] (473 aa)
Agxt2Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. (541 aa)
Got1l1Putative aspartate aminotransferase, cytoplasmic 2; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (404 aa)
Gcat-22-amino-3-ketobutyrate coenzyme A ligase, mitochondrial. (382 aa)
Phykpl5-phosphohydroxy-L-lysine phospho-lyase; Catalyzes the pyridoxal-phosphate-dependent breakdown of 5- phosphohydroxy-L-lysine, converting it to ammonia, inorganic phosphate and 2-aminoadipate semialdehyde; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (467 aa)
DdcAromatic-L-amino-acid decarboxylase; Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine, L-5-hydroxytryptophan to serotonin and L-tryptophan to tryptamine; Belongs to the group II decarboxylase family. (480 aa)
Gpt2Alanine aminotransferase 2; Catalyzes the reversible transamination between alanine and 2-oxoglutarate to form pyruvate and glutamate. (522 aa)
Abat4-aminobutyrate aminotransferase, mitochondrial; Catalyzes the conversion of gamma-aminobutyrate and L-beta- aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine (By similarity). (500 aa)
MocosMolybdenum cofactor sulfurase; Sulfurates the molybdenum cofactor. Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form. (862 aa)
Alas25-aminolevulinate synthase, erythroid-specific, mitochondrial. (587 aa)
EtnpplEthanolamine-phosphate phospho-lyase; Catalyzes the pyridoxal-phosphate-dependent breakdown of phosphoethanolamine, converting it to ammonia, inorganic phosphate and acetaldehyde. (499 aa)
GptAlanine aminotransferase 1; Catalyzes the reversible transamination between alanine and 2-oxoglutarate to form pyruvate and glutamate. Participates in cellular nitrogen metabolism and also in liver gluconeogenesis starting with precursors transported from skeletal muscles (By similarity). (496 aa)
Gadl1Acidic amino acid decarboxylase GADL1; Catalyzes the decarboxylation of L-aspartate, 3-sulfino-L- alanine (cysteine sulfinic acid), and L-cysteate to beta-alanine, hypotaurine and taurine, respectively. The preferred substrate is L- aspartate. Does not exhibit any decarboxylation activity toward glutamate. (502 aa)
Gcat2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. (416 aa)
TatTyrosine aminotransferase; Transaminase involved in tyrosine breakdown. Converts tyrosine to p-hydroxyphenylpyruvate. Can catalyze the reverse reaction, using glutamic acid, with 2-oxoglutarate as cosubstrate (in vitro). Has much lower affinity and transaminase activity for phenylalanine. Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (454 aa)
Sptlc3Serine palmitoyltransferase 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. SPT complexes containing SPTLC3 generate shorter chain sphingoid bases compared to complexes containing SPTLC2. The SPTLC1- SPTLC3-SPTSSA isozyme uses C12-CoA, C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. On the other hand, the SPTLC1- SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent prefe [...] (563 aa)
AadatKynurenine/alpha-aminoadipate aminotransferase, mitochondrial; Transaminase with broad substrate specificity. Has transaminase activity towards aminoadipate, kynurenine, methionine and glutamate. Shows activity also towards tryptophan, aspartate and hydroxykynurenine. Accepts a variety of oxo-acids as amino-group acceptors, with a preference for 2-oxoglutarate, 2-oxocaproic acid, phenylpyruvate and alpha-oxo-gamma-methiol butyric acid. Can also use glyoxylate as amino-group acceptor (in vitro) (By similarity). Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (425 aa)
OatOrnithine aminotransferase, mitochondrial. (439 aa)
Got2Aspartate aminotransferase, mitochondrial; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids. (430 aa)
Tha1L-threonine aldolase. (400 aa)
SepsecsO-phosphoseryl-tRNA(Sec) selenium transferase; Converts O-phosphoseryl-tRNA(Sec) to selenocysteinyl- tRNA(Sec) required for selenoprotein biosynthesis. Belongs to the SepSecS family. (504 aa)
Nfs1Cysteine desulfurase, mitochondrial; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe- S) clusters. May be involved in the biosynthesis of molybdenum cofactor (By similarity); Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. (459 aa)
HdcHistidine decarboxylase; Catalyzes the biosynthesis of histamine from histidine. (662 aa)
KynuKynureninase; Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively. Has a preference for the L-3-hydroxy form. Also has cysteine-conjugate-beta-lyase activity. (465 aa)
Gad2Glutamate decarboxylase 2; Catalyzes the production of GABA. (585 aa)
SclySelenocysteine lyase; Catalyzes the decomposition of L-selenocysteine to L-alanine and elemental selenium; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. (432 aa)
AgxtSerine--pyruvate aminotransferase, mitochondrial; Dual metabolic roles of gluconeogenesis (in the mitochondria) and glyoxylate detoxification (in the peroxisomes). (414 aa)
Shmt2Serine hydroxymethyltransferase, mitochondrial; Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis (By similarity). Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate (By similarity). Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA (By s [...] (504 aa)
Got1Aspartate aminotransferase, cytoplasmic; Biosynthesis of L-glutamate from L-aspartate or L-cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-m [...] (413 aa)
GldcGlycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH) (By similarity). Belongs to the GcvP family. (1025 aa)
Psat1Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (370 aa)
CsadCysteine sulfinic acid decarboxylase; Catalyzes the decarboxylation of L-aspartate, 3-sulfino-L- alanine (cysteine sulfinic acid), and L-cysteate to beta-alanine, hypotaurine and taurine, respectively. The preferred substrate is 3- sulfino-L-alanine. Does not exhibit any decarboxylation activity toward glutamate. (493 aa)
Pdxdc1Pyridoxal-dependent decarboxylase domain-containing protein 1; Belongs to the group II decarboxylase family. (789 aa)
Gad1Glutamate decarboxylase 1; Catalyzes the production of GABA; Belongs to the group II decarboxylase family. (593 aa)
AccslProbable inactive 1-aminocyclopropane-1-carboxylate synthase-like protein 2. (580 aa)
Kyat3Kynurenine--oxoglutarate transaminase 3; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). May catalyze the beta-elimination of S-conjugates and Se-conjugates of L- (seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond (By similarity). Has transaminase activity towards L-kynurenine, tryptophan, phenylalanine, serine, cysteine, methionine, histidine, glutamine and asparagine with glyoxylate as an amino group acceptor (in vitro). Has lower activity with 2-oxoglutarate as amino group acceptor (in vitro). (455 aa)
Accs1-aminocyclopropane-1-carboxylate synthase-like protein 1; Does not catalyze the synthesis of 1-aminocyclopropane-1- carboxylate but is capable of catalyzing the deamination of L- vinylglycine; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (502 aa)
Kyat1Kynurenine--oxoglutarate transaminase 1; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Metabolizes the cysteine conjugates of certain halogenated alkenes and alkanes to form reactive metabolites. Catalyzes the beta-elimination of S-conjugates and Se-conjugates of L-(seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond (By similarity); Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (424 aa)
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (26%) [HD]