STRINGSTRING
Atp2b4 Atp2b4 Atp6v1a Atp6v1a Atp1a4 Atp1a4 Atp8b5 Atp8b5 Ndufs7 Ndufs7 Abcb11 Abcb11 Atp11c Atp11c Atp2b2 Atp2b2 Abcc1 Abcc1 Nnt Nnt Atp2c2 Atp2c2 Atp1a2 Atp1a2 Atp2b3 Atp2b3 Atp11a Atp11a Abcd1 Abcd1 Abcb4 Abcb4 Ndufs3 Ndufs3 Atp4a Atp4a Atp7b Atp7b Atp12a Atp12a Abcb1b Abcb1b Ndufs2 Ndufs2 Abca4 Abca4 Atp2b1 Atp2b1 Atp8b3 Atp8b3 Atp2a3 Atp2a3 Cyc1 Cyc1 Abcg1 Abcg1 Atp8b1 Atp8b1 Abcc2 Abcc2 Atp5b Atp5b Ndufs1 Ndufs1 Atp9a Atp9a Atp11b Atp11b Abca1 Abca1 Atp2a2 Atp2a2 Abcg2 Abcg2 Atp2a1 Atp2a1 Atp13a1 Atp13a1 Abcg8 Abcg8 Atp13a2 Atp13a2 Atp1a1 Atp1a1 Abcb1a Abcb1a Atp8a1 Atp8a1 Ndufv1 Ndufv1 Cyb561d2 Cyb561d2 Uqcrfs1 Uqcrfs1 Atp8b4 Atp8b4 Atp7a Atp7a Abcg5 Abcg5 Atp13a5 Atp13a5 Atp10b Atp10b Atp8a2 Atp8a2 Atp1a3 Atp1a3 mt-Nd1 mt-Nd1 mt-Nd2 mt-Nd2 mt-Nd3 mt-Nd3 mt-Nd4 mt-Nd4 Ndufs8 Ndufs8 Atp9b Atp9b Atp13a4 Atp13a4 Atp10a Atp10a Atp8b2 Atp8b2 Atp13a3 Atp13a3 Ndufv2 Ndufv2 mt-Nd5 mt-Nd5 mt-Nd6 mt-Nd6 mt-Nd4l mt-Nd4l Atp2c1 Atp2c1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Atp2b4Plasma membrane calcium-transporting ATPase 4; Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (By similarity). By regulating sperm cell calcium homeostasis, may play a role in sperm motility ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily. (1205 aa)
Atp6v1aV-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation. May play a role in neurite development and synaptic connectivity. (617 aa)
Atp1a4Sodium/potassium-transporting ATPase subunit alpha-4; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility (By similarity); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1032 aa)
Atp8b5Phospholipid-transporting ATPase FetA; P4-ATPase flippase which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. May play a role in phospholid transport across membranes and in acrosome formation; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1183 aa)
Ndufs7NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (224 aa)
Abcb11Bile salt export pump; Catalyzes the secretion of conjugated bile salts across the canalicular membrane of hepatocytes in an ATP-dependent manner. Transports taurine-conjugated bile salts more rapidly than glycine- conjugated bile salts. (1321 aa)
Atp11cPhospholipid-transporting ATPase 11C; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. In the cell membrane of erythrocytes, it is required to maintain phosphatidylserine (PS) in the inner leaflet preventing its exposure on the surface. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized PS is a phagocytic signal for [...] (1129 aa)
Atp2b2Plasma membrane calcium-transporting ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell. Plays a role in maintaining balance and hearing; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily. (1243 aa)
Abcc1Multidrug resistance-associated protein 1; Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs by decreasing accumulation of drug in cells, and by mediating ATP- and GSH-dependent drug export. Hydrolyzes ATP with low efficiency. Catalyzes the export of sphingosine 1-phosphate from mast cells independently of their degranulation (By similarity). Participates in [...] (1528 aa)
NntNAD(P) transhydrogenase, mitochondrial; The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane (By similarity). May play a role in reactive oxygen species (ROS) detoxification in the adrenal gland (By similarity). In the N-terminal section; belongs to the AlaDH/PNT family. (835 aa)
Atp2c2Calcium-transporting ATPase type 2C member 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. (944 aa)
Atp1a2Sodium/potassium-transporting ATPase subunit alpha-2; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (By similarity). (1020 aa)
Atp2b3Calcium-transporting ATPase; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. (1220 aa)
Atp11aProbable phospholipid-transporting ATPase IH; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (By similarity). (1187 aa)
Abcd1ATP-binding cassette sub-family D member 1; Plays a role in the transport of free very-long-chain fatty acids (VLCFAs) as well as their CoA-esters across the peroxisomal membrane by acting as an ATP-specific binding subunit releasing ADP after ATP hydrolysis (By similarity). Thus, plays a role in regulation of VLCFAs and energy metabolism namely, in the degradation and biosynthesis of fatty acids by beta-oxidation, mitochondrial function and microsomal fatty acid elongation. Involved in several processes; namely, controls the active myelination phase by negatively regulating the micros [...] (736 aa)
Abcb4Phosphatidylcholine translocator ABCB4; Energy-dependent phospholipid efflux translocator that acts as a positive regulator of biliary lipid secretion. Functions as a floppase that translocates specifically phosphatidylcholine (PC) from the inner to the outer leaflet of the canalicular membrane bilayer into the canaliculi between hepatocytes. Translocation of PC makes the biliary phospholipids available for extraction into the canaliculi lumen by bile salt mixed micelles and therefore protects the biliary tree from the detergent activity of bile salts. Plays a role in the recruitment o [...] (1276 aa)
Ndufs3NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (263 aa)
Atp4aPotassium-transporting ATPase alpha chain 1; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for acid production in the stomach; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1034 aa)
Atp7bCopper-transporting ATPase 2; Copper ion transmembrane transporter involved in the export of copper out of the cells, such as the efflux of hepatic copper into the bile. (1462 aa)
Atp12aPotassium-transporting ATPase alpha chain 2; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for potassium absorption in various tissues. (1035 aa)
Abcb1bATP-dependent translocase ABCB1; Translocates drugs and phospholipids across the membrane. Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D- glucosylceramides and sphingomyelins. Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells; Belongs to the ABC transporter superfamily. ABCB family. Multidrug resistance exporter (TC 3.A.1.201) subfamily. (1276 aa)
Ndufs2NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (463 aa)
Abca4Retinal-specific phospholipid-transporting ATPase ABCA4; Catalyzes the translocation of specific phospholipids from the extracellular/lumenal to the cytoplasmic leaflet of membrane coupled to the hydrolysis of ATP. Transports preferentially phosphatidylethanolamine. In the visual cycle, acts as an inward- directed retinoid flipase, retinoid substrates imported by ABCA4 from the extracellular or intradiscal (rod) membrane surfaces to the cytoplasmic membrane surface are all-trans-retinaldehyde (ATR) and N- retinyl-phosphatidyl-ethanolamine (NR-PE). Once transported to the cytoplasmic su [...] (2310 aa)
Atp2b1Plasma membrane calcium-transporting ATPase 1; Catalyzes the hydrolysis of ATP coupled with the transport of calcium from the cytoplasm to the extracellular space thereby maintaining intracellular calcium homeostasis. Plays a role in blood pressure regulation through regulation of intracellular calcium concentration and nitric oxide production leading to regulation of vascular smooth muscle cells vasoconstriction. Positively regulates bone mineralization through absorption of calcium from the intestine. Plays dual roles in osteoclast differentiation and survival by regulating RANKL-ind [...] (1220 aa)
Atp8b3Phospholipid-transporting ATPase IK; P4-ATPase flippase which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. May be responsible for the maintenance of asymmetric distribution of phosphatidylserine (PS) in spermatozoa membranes. Involved in acrosome reactions and binding of spermatozoa to zona pellucida; Belon [...] (1335 aa)
Atp2a3Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. (1038 aa)
Cyc1Cytochrome c1, heme protein, mitochondrial; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient ove [...] (325 aa)
Abcg1ATP-binding cassette sub-family G member 1; Catalyzes the efflux of phospholipids such as sphingomyelin, cholesterol and its oxygenated derivatives like 7beta- hydroxycholesterol and this transport is coupled to hydrlysis of ATP. The lipid efflux is ALB-dependent. Is an active component of the macrophage lipid export complex. Could also be involved in intracellular lipid transport processes. The role in cellular lipid homeostasis may not be limited to macrophages. Prevents cell death by transporting cytotoxic 7beta-hydroxycholesterol (By similarity). (666 aa)
Atp8b1Phospholipid-transporting ATPase IC; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. May play a role in asymmetric distribution of phospholipids in the canicular membrane. Plays a role in bile salt homeostasis. In cooperation with ABCB4 may be involved [...] (1251 aa)
Abcc2Canalicular multispecific organic anion transporter 1; Mediates hepatobiliary excretion of numerous organic anions and conjugated organic anions such as methotrexate, 17beta-estradiol 17-glucosiduronic acid and leukotriene C4. Also transports sulfated bile salt such as taurolithocholate sulfate. May function as a cellular cisplatin transporter; Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1543 aa)
Atp5bATP synthase subunit beta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (529 aa)
Ndufs1NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized (By sim [...] (727 aa)
Atp9aProbable phospholipid-transporting ATPase IIA. (1047 aa)
Atp11bPhospholipid-transporting ATPase; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1175 aa)
Abca1Phospholipid-transporting ATPase ABCA1; Catalyzes the translocation of specific phospholipids from the cytoplasmic to the extracellular/lumenal leaflet of membrane coupled to the hydrolysis of ATP. Thereby, participates to phospholipids transfer to apoliproteins to form nascent high density lipoproteins/HDLs. Transports preferentially phosphatidylcholine over phosphatidylserine. May play a similar role in the efflux of intracellular cholesterol to apoliproteins and the formation of nascent high density lipoproteins/HDLs; Belongs to the ABC transporter superfamily. ABCA family. (2261 aa)
Atp2a2Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform SERCA2A is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytos [...] (1044 aa)
Abcg2Broad substrate specificity ATP-binding cassette transporter ABCG2; Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells. Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme. Also mediates the efflux of sphingosine-1-P from cells (By similarity). Acts as a urate exporter functioning in both [...] (657 aa)
Atp2a1Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. (994 aa)
Atp13a1Manganese-transporting ATPase 13A1; Mediates manganese transport into the endoplasmic reticulum. The ATPase activity is required for cellular manganese homeostasis (By similarity). (1200 aa)
Abcg8ATP-binding cassette sub-family G member 8; ABCG5 and ABCG8 form an obligate heterodimer that mediates Mg(2+)- and ATP-dependent sterol transport across the cell membrane. Plays an essential role in the selective transport of the dietary cholesterol in and out of the enterocytes and in the selective sterol excretion by the liver into bile. Plays an important role in preventing the accumulation of dietary plant sterols in the body. Required for normal sterol homeostasis. The heterodimer with ABCG5 has ATPase activity. (673 aa)
Atp13a2Cation-transporting ATPase 13A2; ATPase that plays a role in intracellular cation homeostasis and the maintenance of neuronal integrity. Required for a proper lysosomal and mitochondrial maintenance. Regulates the autophagy- lysosome pathway through the control of SYT11 expression at both transcriptional and post-translational levels. (1169 aa)
Atp1a1Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1023 aa)
Abcb1aATP-dependent translocase ABCB1; Translocates drugs and phospholipids across the membrane. Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D- glucosylceramides and sphingomyelins. Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug- resistant cells (By similarity). (1276 aa)
Atp8a1Phospholipid-transporting ATPase IA; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. In vitro, its ATPase activity is selectively and stereospecifically stimulated by phosphatidylserine (PS). The flippase complex ATP8A1:TMEM30A seems to play a role in r [...] (1164 aa)
Ndufv1NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (464 aa)
Cyb561d2Cytochrome b561 domain-containing protein 2; Two-heme-containing cytochrome that catalyzes ascorbate- dependent trans-membrane ferric-chelate reduction. (222 aa)
Uqcrfs1Cytochrome b-c1 complex subunit Rieske, mitochondrial; [Cytochrome b-c1 complex subunit Rieske, mitochondrial]: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and su [...] (274 aa)
Atp8b4Phospholipid-transporting ATPase; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1194 aa)
Atp7aCopper-transporting ATPase 1; May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells (By similarity); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IB subfamily. (1492 aa)
Abcg5ATP-binding cassette sub-family G member 5; ABCG5 and ABCG8 form an obligate heterodimer that mediates Mg(2+)- and ATP-dependent sterol transport across the cell membrane. Plays an essential role in the selective transport of dietary plant sterols and cholesterol in and out of the enterocytes and in the selective sterol excretion by the liver into bile. Required for normal sterol homeostasis. The heterodimer with ABCG8 has ATPase activity. (652 aa)
Atp13a5Probable cation-transporting ATPase 13A5; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type V subfamily. (1216 aa)
Atp10bPhospholipid-transporting ATPase; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1474 aa)
Atp8a2Phospholipid-transporting ATPase IB; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. Reconstituted to liposomes, the ATP8A2:TMEM30A flippase complex predomiminantly transports phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE). [...] (1148 aa)
Atp1a3Sodium/potassium-transporting ATPase subunit alpha-3; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (By similarity). Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1013 aa)
mt-Nd1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (318 aa)
mt-Nd2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (345 aa)
mt-Nd3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa)
mt-Nd4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (459 aa)
Ndufs8NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (212 aa)
Atp9bProbable phospholipid-transporting ATPase IIB; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1135 aa)
Atp13a4Probable cation-transporting ATPase 13A4. (1193 aa)
Atp10aProbable phospholipid-transporting ATPase VA; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (By similarity). (1508 aa)
Atp8b2Phospholipid-transporting ATPase ID; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (By similarity); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1190 aa)
Atp13a3Probable cation-transporting ATPase 13A3; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type V subfamily. (1249 aa)
Ndufv2NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (248 aa)
mt-Nd5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (607 aa)
mt-Nd6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (172 aa)
mt-Nd4lNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (98 aa)
Atp2c1Calcium-transporting ATPase type 2C member 1; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium. (952 aa)
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (22%) [HD]