| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| Ripk1 | Ripk3 | ENSMUSP00000129831 | ENSMUSP00000022830 | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | 0.999 |
| Ripk1 | Ticam1 | ENSMUSP00000129831 | ENSMUSP00000055104 | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | 0.978 |
| Ripk1 | Zbp1 | ENSMUSP00000129831 | ENSMUSP00000029018 | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | 0.993 |
| Ripk3 | Ripk1 | ENSMUSP00000022830 | ENSMUSP00000129831 | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | 0.999 |
| Ripk3 | Ticam1 | ENSMUSP00000022830 | ENSMUSP00000055104 | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | 0.963 |
| Ripk3 | Zbp1 | ENSMUSP00000022830 | ENSMUSP00000029018 | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | 0.996 |
| Ticam1 | Ripk1 | ENSMUSP00000055104 | ENSMUSP00000129831 | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | 0.978 |
| Ticam1 | Ripk3 | ENSMUSP00000055104 | ENSMUSP00000022830 | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | 0.963 |
| Ticam1 | Zbp1 | ENSMUSP00000055104 | ENSMUSP00000029018 | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | 0.401 |
| Zbp1 | Ripk1 | ENSMUSP00000029018 | ENSMUSP00000129831 | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which is a key regulator of both cell death and cell survival. Exhibits kinase activity- dependent functions that trigger cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival. Initiates ripoptocide which describes cell death that is dependent on RIPK1, be it apoptosis or necroptosis. Upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, [...] | 0.993 |
| Zbp1 | Ripk3 | ENSMUSP00000029018 | ENSMUSP00000022830 | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. | 0.996 |
| Zbp1 | Ticam1 | ENSMUSP00000029018 | ENSMUSP00000055104 | Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3. | TIR domain-containing adapter molecule 1; Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF- kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis. Ligand binding to these receptors results in TRIF recruitment through its TIR domain. Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively. Phosphorylation by TBK1 on the pLxIS motif [...] | 0.401 |