node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Comt | Maoa | ENSMUSP00000130077 | ENSMUSP00000026013 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | 0.991 |
Comt | Maob | ENSMUSP00000130077 | ENSMUSP00000040550 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | 0.989 |
Comt | Slc18a2 | ENSMUSP00000130077 | ENSMUSP00000026084 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis (By similarity). | 0.696 |
Comt | Snca | ENSMUSP00000130077 | ENSMUSP00000109907 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Alpha-synuclein; Neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release. Participates as a monomer in synaptic vesicle exocytosis by enhancing vesicle priming, fusion and dilation of exocytotic fusion pores. Mechanistically, acts by increasing local Ca(2+) release from microdomains which is essential for the enhancement of ATP-induced exocytosis. Acts also as a molecular chaperone in its multimeric membrane-bound state, assisting in the folding of synaptic fusion components called SNAREs [...] | 0.782 |
Comt | Th | ENSMUSP00000130077 | ENSMUSP00000000219 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.805 |
Comt | Tomt | ENSMUSP00000130077 | ENSMUSP00000102582 | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | Transmembrane O-methyltransferase homolog; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Required for auditory function. Component of the cochlear hair cell's mechanotransduction (MET) machinery. Involved in the assembly of the asymmetric tip-link MET complex. Required for transportation of TMC1 and TMC2 proteins into the mechanically sensitive stereocilia of the hair cells. The function in MET is independent of the enzymatic activity ; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-de [...] | 0.911 |
Maoa | Comt | ENSMUSP00000026013 | ENSMUSP00000130077 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | 0.991 |
Maoa | Maob | ENSMUSP00000026013 | ENSMUSP00000040550 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | 0.931 |
Maoa | Prkn | ENSMUSP00000026013 | ENSMUSP00000140587 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | E3 ubiquitin-protein ligase parkin; Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746 and AIMP2. Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of mi [...] | 0.951 |
Maoa | Slc18a2 | ENSMUSP00000026013 | ENSMUSP00000026084 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis (By similarity). | 0.794 |
Maoa | Snca | ENSMUSP00000026013 | ENSMUSP00000109907 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Alpha-synuclein; Neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release. Participates as a monomer in synaptic vesicle exocytosis by enhancing vesicle priming, fusion and dilation of exocytotic fusion pores. Mechanistically, acts by increasing local Ca(2+) release from microdomains which is essential for the enhancement of ATP-induced exocytosis. Acts also as a molecular chaperone in its multimeric membrane-bound state, assisting in the folding of synaptic fusion components called SNAREs [...] | 0.658 |
Maoa | Th | ENSMUSP00000026013 | ENSMUSP00000000219 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.798 |
Maoa | Tomt | ENSMUSP00000026013 | ENSMUSP00000102582 | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | Transmembrane O-methyltransferase homolog; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Required for auditory function. Component of the cochlear hair cell's mechanotransduction (MET) machinery. Involved in the assembly of the asymmetric tip-link MET complex. Required for transportation of TMC1 and TMC2 proteins into the mechanically sensitive stereocilia of the hair cells. The function in MET is independent of the enzymatic activity ; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-de [...] | 0.985 |
Maob | Comt | ENSMUSP00000040550 | ENSMUSP00000130077 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family. | 0.989 |
Maob | Maoa | ENSMUSP00000040550 | ENSMUSP00000026013 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). | 0.931 |
Maob | Prkn | ENSMUSP00000040550 | ENSMUSP00000140587 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | E3 ubiquitin-protein ligase parkin; Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746 and AIMP2. Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of mi [...] | 0.963 |
Maob | Slc18a2 | ENSMUSP00000040550 | ENSMUSP00000026084 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis (By similarity). | 0.794 |
Maob | Snca | ENSMUSP00000040550 | ENSMUSP00000109907 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Alpha-synuclein; Neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release. Participates as a monomer in synaptic vesicle exocytosis by enhancing vesicle priming, fusion and dilation of exocytotic fusion pores. Mechanistically, acts by increasing local Ca(2+) release from microdomains which is essential for the enhancement of ATP-induced exocytosis. Acts also as a molecular chaperone in its multimeric membrane-bound state, assisting in the folding of synaptic fusion components called SNAREs [...] | 0.742 |
Maob | Th | ENSMUSP00000040550 | ENSMUSP00000000219 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.808 |
Maob | Tomt | ENSMUSP00000040550 | ENSMUSP00000102582 | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). | Transmembrane O-methyltransferase homolog; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Required for auditory function. Component of the cochlear hair cell's mechanotransduction (MET) machinery. Involved in the assembly of the asymmetric tip-link MET complex. Required for transportation of TMC1 and TMC2 proteins into the mechanically sensitive stereocilia of the hair cells. The function in MET is independent of the enzymatic activity ; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-de [...] | 0.985 |