node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Adcy8 | Calm3 | ENSMUSP00000023007 | ENSMUSP00000019514 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | 0.987 |
Adcy8 | Calm4 | ENSMUSP00000023007 | ENSMUSP00000041636 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Calmodulin-4; Implicated in the early stage of ectopic ossification. | 0.979 |
Adcy8 | Calm5 | ENSMUSP00000023007 | ENSMUSP00000139342 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Skin calmodulin-related protein 2. | 0.979 |
Adcy8 | Calml3 | ENSMUSP00000023007 | ENSMUSP00000076880 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Calmodulin-like protein 3; May function as a specific light chain of unconventional myosin-10 (MYO10), also enhances MYO10 translation, possibly by acting as a chaperone for the emerging MYO10 heavy chain protein. May compete with calmodulin by binding, with different affinities, to cellular substrates (By similarity). | 0.980 |
Adcy8 | Calml4 | ENSMUSP00000023007 | ENSMUSP00000034777 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Calmodulin-like protein 4. | 0.982 |
Adcy8 | Creb1 | ENSMUSP00000023007 | ENSMUSP00000059973 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Cyclic AMP-responsive element-binding protein 1; Phosphorylation-dependent transcription factor that stimulates transcription upon binding to the DNA cAMP response element (CRE), a sequence present in many viral and cellular promoters. Transcription activation is enhanced by the TORC coactivators which act independently of Ser-133 phosphorylation. Involved in different cellular processes including the synchronization of circadian rhythmicity and the differentiation of adipose cells. Belongs to the bZIP family. | 0.427 |
Adcy8 | Gria1 | ENSMUSP00000023007 | ENSMUSP00000044494 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Glutamate receptor 1; Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulati [...] | 0.420 |
Adcy8 | Grin2a | ENSMUSP00000023007 | ENSMUSP00000142900 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Glutamate receptor ionotropic, NMDA 2A; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition; channels containing GRIN1 and GRIN2A have higher sensitivity to glutamate and faster kineti [...] | 0.556 |
Adcy8 | Grin2b | ENSMUSP00000023007 | ENSMUSP00000062284 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | Glutamate receptor ionotropic, NMDA 2B; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. [...] | 0.507 |
Calm3 | Adcy8 | ENSMUSP00000019514 | ENSMUSP00000023007 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon-like peptide 1 and glucose signalin [...] | 0.987 |
Calm3 | Calm4 | ENSMUSP00000019514 | ENSMUSP00000041636 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Calmodulin-4; Implicated in the early stage of ectopic ossification. | 0.993 |
Calm3 | Calm5 | ENSMUSP00000019514 | ENSMUSP00000139342 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Skin calmodulin-related protein 2. | 0.993 |
Calm3 | Calml3 | ENSMUSP00000019514 | ENSMUSP00000076880 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Calmodulin-like protein 3; May function as a specific light chain of unconventional myosin-10 (MYO10), also enhances MYO10 translation, possibly by acting as a chaperone for the emerging MYO10 heavy chain protein. May compete with calmodulin by binding, with different affinities, to cellular substrates (By similarity). | 0.992 |
Calm3 | Calml4 | ENSMUSP00000019514 | ENSMUSP00000034777 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Calmodulin-like protein 4. | 0.993 |
Calm3 | Creb1 | ENSMUSP00000019514 | ENSMUSP00000059973 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Cyclic AMP-responsive element-binding protein 1; Phosphorylation-dependent transcription factor that stimulates transcription upon binding to the DNA cAMP response element (CRE), a sequence present in many viral and cellular promoters. Transcription activation is enhanced by the TORC coactivators which act independently of Ser-133 phosphorylation. Involved in different cellular processes including the synchronization of circadian rhythmicity and the differentiation of adipose cells. Belongs to the bZIP family. | 0.829 |
Calm3 | Gria1 | ENSMUSP00000019514 | ENSMUSP00000044494 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Glutamate receptor 1; Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulati [...] | 0.632 |
Calm3 | Gria2 | ENSMUSP00000019514 | ENSMUSP00000074787 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Glutamate receptor 2; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of [...] | 0.497 |
Calm3 | Grin2a | ENSMUSP00000019514 | ENSMUSP00000142900 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Glutamate receptor ionotropic, NMDA 2A; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition; channels containing GRIN1 and GRIN2A have higher sensitivity to glutamate and faster kineti [...] | 0.909 |
Calm3 | Grin2b | ENSMUSP00000019514 | ENSMUSP00000062284 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | Glutamate receptor ionotropic, NMDA 2B; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. [...] | 0.901 |
Calm3 | Hras | ENSMUSP00000019514 | ENSMUSP00000026572 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. | GTPase HRas, N-terminally processed; Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. | 0.985 |