Your Input: | |||||
| Grpel1 | GrpE protein homolog 1, mitochondrial; Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. Seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins (By similarity). (217 aa) | ||||
| Fdx1 | Adrenodoxin, mitochondrial; Essential for the synthesis of various steroid hormones, participates in the reduction of mitochondrial cytochrome P450 for steroidogenesis. Transfers electrons from adrenodoxin reductase to CYP11A1, a cytochrome P450 that catalyzes cholesterol side-chain cleavage. Does not form a ternary complex with adrenodoxin reductase and CYP11A1 but shuttles between the two enzymes to transfer electrons. Belongs to the adrenodoxin/putidaredoxin family. (188 aa) | ||||
| Ireb2 | Iron-responsive element-binding protein 2; RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA. (963 aa) | ||||
| Slc25a28 | Mitoferrin-2; Mitochondrial iron transporter that mediates iron uptake. Probably required for heme synthesis of hemoproteins and Fe-S cluster assembly in non-erythroid cells. The iron delivered into the mitochondria, presumably as Fe(2+), is then probably delivered to ferrochelatase to catalyze Fe(2+) incorporation into protoprophyrin IX to make heme (Probable); Belongs to the mitochondrial carrier (TC 2.A.29) family. (364 aa) | ||||
| Map2k4 | Dual specificity mitogen-activated protein kinase kinase 4; Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylati [...] (397 aa) | ||||
| Nthl1 | Endonuclease III-like protein 1; Bifunctional DNA N-glycosylase with associated apurinic/apyrimidinic (AP) lyase function that catalyzes the first step in base excision repair (BER), the primary repair pathway for the repair of oxidative DNA damage. The DNA N-glycosylase activity releases the damaged DNA base from DNA by cleaving the N-glycosidic bond, leaving an AP site. The AP lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination. Primarily recognizes and repairs oxidative base damage of pyrimidines; Belongs to the Nth/MutY family. (300 aa) | ||||
| Iba57 | Putative transferase CAF17 homolog, mitochondrial; Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. Belongs to the GcvT family. CAF17 subfamily. (358 aa) | ||||
| Cisd1 | CDGSH iron-sulfur domain-containing protein 1; Plays a key role in regulating maximal capacity for electron transport and oxidative phosphorylation. May be involved in Fe-S cluster shuttling and/or in redox reactions (By similarity). Belongs to the CISD protein family. (108 aa) | ||||
| Tfrc | Transferrin receptor protein 1; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). Upon stimulation, positively regulates T and B cell proliferation through iron uptake ; Belongs to t [...] (763 aa) | ||||
| Ppat | Amidophosphoribosyltransferase; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (517 aa) | ||||
| Fech | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX. (422 aa) | ||||
| Slc25a37 | Mitoferrin-1; Mitochondrial iron transporter that specifically mediates iron uptake in developing erythroid cells, thereby playing an essential role in heme biosynthesis. The iron delivered into the mitochondria, presumably as Fe(2+), is then probably delivered to ferrochelatase to catalyze Fe(2+) incorporation into protoprophyrin IX to make heme. (338 aa) | ||||
| Xdh | Xanthine dehydrogenase/oxidase; Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. (1335 aa) | ||||
| Epas1 | Endothelial PAS domain-containing protein 1; Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters. Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activ [...] (874 aa) | ||||
| Hspa9 | Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (By similarity). Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging. Belongs to the heat shock protein 70 family. (679 aa) | ||||
| Iscu | Iron-sulfur cluster assembly enzyme ISCU, mitochondrial; Scaffold protein for the de novo synthesis of iron-sulfur (Fe-S) clusters within mitochondria, which is required for maturation of both mitochondrial and cytoplasmic [2Fe-2S] and [4Fe-4S] proteins. First, a [2Fe-2S] cluster is transiently assembled on the scaffold protein ISCU. In a second step, the cluster is released from ISCU, transferred to a glutaredoxin GLRX5, followed by the formation of mitochondrial [2Fe-2S] proteins, the synthesis of [4Fe-4S] clusters and their target-specific insertion into the recipient apoproteins. C [...] (168 aa) | ||||
| Nfs1 | Cysteine desulfurase, mitochondrial; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe- S) clusters. May be involved in the biosynthesis of molybdenum cofactor (By similarity); Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. (459 aa) | ||||
| Abcb7 | ATP-binding cassette sub-family B member 7, mitochondrial; Could be involved in the transport of heme from the mitochondria to the cytosol. Plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins. (752 aa) | ||||
| Isca1 | Iron-sulfur cluster assembly 1 homolog, mitochondrial; Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. Probably involved in the binding of an intermediate of Fe/S cluster assembly. (129 aa) | ||||
| Stk11 | Serine/threonine-protein kinase STK11; Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP [...] (436 aa) | ||||
| Lyrm4 | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. (91 aa) | ||||
| Fxn | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization. Modulates the RNA-binding activity of ACO1 (By similarity); Belongs to the frataxin family. (207 aa) | ||||
| Nfe2l2 | Nuclear factor erythroid 2-related factor 2; Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles. In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex. In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, hetero [...] (597 aa) | ||||
| Aco1 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding; Belongs to the aconitase/IPM isomerase family. (889 aa) | ||||
| Jun | Transcription factor AP-1; Transcription factor that recognizes and binds to the enhancer heptamer motif 5'-TGA[CG]TCA-3'. Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation. Involved in activated KRAS-mediated transcriptional activation of USP28 (By similarity). Binds to the USP28 promoter (By similarity). (334 aa) | ||||
| Ppargc1a | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Transcriptional coactivator for steroid receptors and nuclear receptors. Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter. Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis. Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism. Induces the expression of PERM1 in [...] (797 aa) | ||||
| Fdxr | NADPH:adrenodoxin oxidoreductase, mitochondrial; Serves as the first electron transfer protein in all the mitochondrial P450 systems including cholesterol side chain cleavage in all steroidogenic tissues, steroid 11-beta hydroxylation in the adrenal cortex, 25-OH-vitamin D3-24 hydroxylation in the kidney, and sterol C- 27 hydroxylation in the liver. (494 aa) | ||||
| Glrx5 | Glutaredoxin-related protein 5, mitochondrial; Monothiol glutaredoxin involved in the biogenesis of iron- sulfur clusters (By similarity). Involved in protein lipoylation, acting in the pathway that provides an iron-sulfur cluster to lipoate synthase (By similarity). Required for normal iron homeostasis (By similarity). Required for normal regulation of hemoglobin synthesis by the iron-sulfur protein ACO1 (By similarity). May protect cells against apoptosis due to reactive oxygen species and oxidative stress. (152 aa) | ||||
| Hif1a | Hypoxia-inducible factor 1-alpha; Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Heterodimerizes with ARNT; heterodimer binds to core DNA sequenc [...] (836 aa) | ||||
| Isca2 | Iron-sulfur cluster assembly 2 homolog, mitochondrial; Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. May be involved in the binding of an intermediate of Fe/S cluster assembly. Belongs to the HesB/IscA family. (154 aa) | ||||
| Glrx | Glutaredoxin-1; Has a glutathione-disulfide oxidoreductase activity in the presence of NADPH and glutathione reductase. Reduces low molecular weight disulfides and proteins; Belongs to the glutaredoxin family. (107 aa) | ||||