STRINGSTRING
Ins2 Ins2 Aldh1a1 Aldh1a1 Sds Sds Retn Retn Acox2 Acox2 Adhfe1 Adhfe1 Ppara Ppara Acsl6 Acsl6 Adh6a Adh6a Adrb3 Adrb3 Slc27a4 Slc27a4 Aldh3a2 Aldh3a2 Retnlg Retnlg Lep Lep Aldh7a1 Aldh7a1 Acox3 Acox3 Acox1 Acox1 Ins1 Ins1 Acsbg2 Acsbg2 Acaa1a Acaa1a Acaa2 Acaa2 Acsbg1 Acsbg1 Aldh1a2 Aldh1a2 Acsl4 Acsl4 Echs1 Echs1 Dcxr Dcxr Cpt1a Cpt1a Hsd17b4 Hsd17b4 Adipoq Adipoq Ehhadh Ehhadh Ckmt2 Ckmt2 Srebf1 Srebf1 Acaa1b Acaa1b Igf1r Igf1r Ckb Ckb Ckmt1 Ckmt1 Ckm Ckm
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Ins2Insulin-2 A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa)
Aldh1a1Retinal dehydrogenase 1; Can convert/oxidize retinaldehyde to retinoic acid. Binds free retinal and cellular retinol-binding protein-bound retinal (By similarity). May have a broader specificity and oxidize other aldehydes in vivo (By similarity). (501 aa)
SdsL-serine dehydratase/L-threonine deaminase; Belongs to the serine/threonine dehydratase family. (327 aa)
RetnResistin; Hormone that seems to suppress insulin ability to stimulate glucose uptake into adipose cells. Potentially links obesity to diabetes; Belongs to the resistin/FIZZ family. (114 aa)
Acox2Peroxisomal acyl-coenzyme A oxidase 2; Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycoprostanic acids (By similarity). Capable of oxidizing short as well as long chain 2-methyl branched fatty acids (By similarity). (681 aa)
Adhfe1Hydroxyacid-oxoacid transhydrogenase, mitochondrial; Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). L-3-hydroxybutyrate (L-3-OHB) is also a substrate for HOT when using 2- KG as hydrogen acceptor, resulting in the formation of D-2-HG (By similarity). (465 aa)
PparaPeroxisome proliferator-activated receptor alpha; Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn- glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and [...] (468 aa)
Acsl6Long-chain-fatty-acid--CoA ligase 6; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (By similarity). Plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid (By similarity). (722 aa)
Adh6aAlcohol dehydrogenase 6A (class V). (375 aa)
Adrb3Beta-3 adrenergic receptor; Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. Beta- 3 is involved in the regulation of lipolysis and thermogenesis. (400 aa)
Slc27a4Long-chain fatty acid transport protein 4; Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. Appears to be the principal fatty acid transporter in small intestinal enterocytes. Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids (VLCFAs). Indirectly inhibits RPE65 via substrate competition and via production of VLCFA derivatives like lignoceroyl-CoA. Prevents light-induced degeneration of rods and cones. Belongs to the [...] (643 aa)
Aldh3a2Aldehyde dehydrogenase family 3 member A2; Catalyzes the oxidation of medium and long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1- phosphate (S1P) degradation product hexadecenal to hexadecenoic acid. (484 aa)
RetnlgResistin-like gamma; Probable hormone (Probable). Promotes chemotaxis in myeloid cells ; Belongs to the resistin/FIZZ family. (117 aa)
LepLeptin; Key player in the regulation of energy balance and body weight control. Once released into the circulation, has central and peripheral effects by binding LEPR, found in many tissues, which results in the activation of several major signaling pathways. In the hypothalamus, acts as an appetite-regulating factor that induces a decrease in food intake and an increase in energy consumption by inducing anorexinogenic factors and suppressing orexigenic neuropeptides, also regulates bone mass and secretion of hypothalamo-pituitary-adrenal hormones. In the periphery, increases basal met [...] (167 aa)
Aldh7a1Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism (By similarity). (539 aa)
Acox3Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids. (700 aa)
Acox1Peroxisomal acyl-CoA oxidase 1, A chain; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs (By similarity). Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length (By similarity). Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs (By similarity). (661 aa)
Ins1Insulin-1 A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (108 aa)
Acsbg2Long-chain-fatty-acid--CoA ligase ACSBG2; Catalyzes the conversion of fatty acids such as long chain and very long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. Can activate diverse saturated, monosaturated and polyunsaturated fatty acids. Has increased ability to activate oleic and linoleic acid. May play a role in spermatogenesis. (667 aa)
Acaa1a3-ketoacyl-CoA thiolase A, peroxisomal. (424 aa)
Acaa23-ketoacyl-CoA thiolase, mitochondrial; In the production of energy from fats, this is one of the enzymes that catalyzes the last step of the mitochondrial beta- oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA. Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain unbranched 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms. Also catalyzes the condensation of two acetyl-CoA molecules into acetoacetyl-CoA and could be involved in the production of ketone bodies. Also displays hydrolase activit [...] (397 aa)
Acsbg1Long-chain-fatty-acid--CoA ligase ACSBG1; Catalyzes the conversion of fatty acids such as long-chain and very long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation (By similarity). Can activate diverse saturated, monosaturated and polyunsaturated fatty acids. (721 aa)
Aldh1a2Retinal dehydrogenase 2; Converts retinaldehyde to retinoic acid. Recognizes as substrates free retinal and cellular retinol-binding protein-bound retinal (By similarity). Lacks activity with benzaldehyde, acetaldehyde and octanal. Displays complete lack of activity with citral (By similarity). (518 aa)
Acsl4Long-chain-fatty-acid--CoA ligase 4; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially activates arachidonate and eicosapentaenoate as substrates. Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (By similarity). Belongs to the ATP-dependent AMP-binding enzyme family. (711 aa)
Echs1Enoyl-CoA hydratase, mitochondrial; Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate (By similarity). Has high substrate specificity for crotonyl-CoA and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA and methacrylyl-CoA. It is noteworthy that binds tiglyl-CoA, but hydrates only a small amount of this substrate (By similarity). (290 aa)
DcxrL-xylulose reductase; Catalyzes the NADPH-dependent reduction of several pentoses, tetroses, trioses, alpha-dicarbonyl compounds and L-xylulose. Participates in the uronate cycle of glucose metabolism. May play a role in the water absorption and cellular osmoregulation in the proximal renal tubules by producing xylitol, an osmolyte, thereby preventing osmolytic stress from occurring in the renal tubules. (244 aa)
Cpt1aCarnitine O-palmitoyltransferase 1, liver isoform; Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Plays an important role in triglyceride metabolism; Belongs to the carnitine/choline acetyltransferase family. (773 aa)
Hsd17b4Peroxisomal multifunctional enzyme type 2; Bifunctional enzyme acting on the peroxisomal beta-oxidation pathway for fatty acids. Catalyzes the formation of 3-ketoacyl-CoA intermediates from both straight-chain and 2-methyl-branched-chain fatty acids (By similarity). (735 aa)
AdipoqAdiponectin; Important adipokine involved in the control of fat metabolism and insulin sensitivity, with direct anti-diabetic, anti-atherogenic and anti-inflammatory activities. Stimulates AMPK phosphorylation and activation in the liver and the skeletal muscle, enhancing glucose utilization and fatty-acid combustion. Antagonizes TNF-alpha by negatively regulating its expression in various tissues such as liver and macrophages, and also by counteracting its effects. Inhibits endothelial NF-kappa-B signaling through a cAMP-dependent pathway. May play a role in cell growth, angiogenesis [...] (247 aa)
EhhadhEnoyl-CoA hydratase/3,2-trans-enoyl-CoA isomerase; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (718 aa)
Ckmt2Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (By similarity). (419 aa)
Srebf1Processed sterol regulatory element-binding protein 1; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the fatty acid and to a lesser degree the cholesterol synthesis pathway. Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3'). Isoform SREBP-1A is much more active than isoform SREBP-1C in stimulating transcription from SRE-1- containing promoters. (1134 aa)
Acaa1b3-ketoacyl-CoA thiolase B, peroxisomal. (424 aa)
Igf1rInsulin-like growth factor 1 receptor alpha chain; Receptor tyrosine kinase which mediates actions of insulin- like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates ( [...] (1369 aa)
CkbCreatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (381 aa)
Ckmt1Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (418 aa)
CkmCreatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (381 aa)
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (28%) [HD]