node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Eefsec | Eif4a3 | ENSMUSP00000131207 | ENSMUSP00000026667 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | 0.570 |
Eefsec | Gpx1 | ENSMUSP00000131207 | ENSMUSP00000081010 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Glutathione peroxidase 1; Protects the hemoglobin in erythrocytes from oxidative breakdown. | 0.455 |
Eefsec | Gpx4 | ENSMUSP00000131207 | ENSMUSP00000094863 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Phospholipid hydroperoxide glutathione peroxidase; Essential antioxidant peroxidase that directly reduces phospholipid hydroperoxide even if they are incorporated in membranes and lipoproteins. Can also reduce fatty acid hydroperoxide, cholesterol hydroperoxide and thymine hydroperoxide (By similarity). Plays a key role in protecting cells from oxidative damage by preventing membrane lipid peroxidation. Required to prevent cells from ferroptosis, a non-apoptotic cell death resulting from an iron-dependent accumulation of lipid reactive oxygen species. The presence of selenocysteine (Se [...] | 0.489 |
Eefsec | Secisbp2 | ENSMUSP00000131207 | ENSMUSP00000045740 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | SECIS-binding protein 2. | 0.982 |
Eefsec | Selenof | ENSMUSP00000131207 | ENSMUSP00000046910 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein F; May be involved in redox reactions associated with the formation of disulfide bonds (By similarity). May contribute to the quality control of protein folding in the endoplasmic reticulum. May regulate protein folding by enhancing the catalytic activity of UGGT1/UGCGL1 and UGGT2/UGCGL2 (By similarity). | 0.681 |
Eefsec | Selenoh | ENSMUSP00000131207 | ENSMUSP00000099706 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein H; May be involved in a redox-related process. | 0.540 |
Eefsec | Selenok | ENSMUSP00000131207 | ENSMUSP00000107887 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein K; Required for Ca(2+) flux in immune cells and plays a role in T-cell proliferation and in T-cell and neutrophil migration. Involved in endoplasmic reticulum-associated degradation (ERAD) of soluble glycosylated proteins (By similarity). Required for palmitoylation and cell surface expression of CD36 and involved in macrophage uptake of low-density lipoprotein and in foam cell formation. Together with ZDHHC6, required for palmitoylation of ITPR1 in immune cells, leading to regulate ITPR1 stability and function. Plays a role in protection of cells from ER stress-induced a [...] | 0.580 |
Eefsec | Selenop | ENSMUSP00000131207 | ENSMUSP00000124305 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein P; Might be responsible for some of the extracellular antioxidant defense properties of selenium or might be involved in the transport of selenium (By similarity). May supply selenium to tissues such as brain and testis. | 0.856 |
Eefsec | Selenos | ENSMUSP00000131207 | ENSMUSP00000099301 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein S; Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination (By similarity). | 0.656 |
Eefsec | Selenow | ENSMUSP00000131207 | ENSMUSP00000038943 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenoprotein W; Plays a role as a glutathione (GSH)-dependent antioxidant. May be involved in a redox-related process. May play a role in the myopathies of selenium deficiency; Belongs to the SelWTH family. Selenoprotein W subfamily. | 0.597 |
Eefsec | Sephs2 | ENSMUSP00000131207 | ENSMUSP00000081009 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Selenide, water dikinase 2; Synthesizes selenophosphate from selenide and ATP; Belongs to the selenophosphate synthase 1 family. Class I subfamily. | 0.821 |
Eefsec | Trnau1ap | ENSMUSP00000131207 | ENSMUSP00000030730 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | tRNA selenocysteine 1-associated protein 1; Involved in the early steps of selenocysteine biosynthesis and tRNA(Sec) charging to the later steps resulting in the cotranslational incorporation of selenocysteine into selenoproteins. Stabilizes the SECISBP2, EEFSEC and tRNA(Sec) complex. May be involved in the methylation of tRNA(Sec). Enhances efficiency of selenoproteins synthesis. | 0.914 |
Eefsec | Txnrd1 | ENSMUSP00000131207 | ENSMUSP00000152046 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Thioredoxin reductase 1, cytoplasmic; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. | 0.513 |
Eefsec | Txnrd2 | ENSMUSP00000131207 | ENSMUSP00000146030 | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | Thioredoxin reductase 2, mitochondrial; Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox-regulated cell signaling. | 0.564 |
Eif4a3 | Eefsec | ENSMUSP00000026667 | ENSMUSP00000131207 | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | Selenocysteine-specific elongation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | 0.570 |
Eif4a3 | Gapdh | ENSMUSP00000026667 | ENSMUSP00000113942 | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | 0.512 |
Eif4a3 | Secisbp2 | ENSMUSP00000026667 | ENSMUSP00000045740 | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | SECIS-binding protein 2. | 0.773 |
Eif4a3 | Smg1 | ENSMUSP00000026667 | ENSMUSP00000032891 | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | Serine/threonine-protein kinase SMG1; Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense- mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction compl [...] | 0.921 |
Eif4a3 | Trnau1ap | ENSMUSP00000026667 | ENSMUSP00000030730 | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | tRNA selenocysteine 1-associated protein 1; Involved in the early steps of selenocysteine biosynthesis and tRNA(Sec) charging to the later steps resulting in the cotranslational incorporation of selenocysteine into selenoproteins. Stabilizes the SECISBP2, EEFSEC and tRNA(Sec) complex. May be involved in the methylation of tRNA(Sec). Enhances efficiency of selenoproteins synthesis. | 0.464 |
Gapdh | Eif4a3 | ENSMUSP00000113942 | ENSMUSP00000026667 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Eukaryotic initiation factor 4A-III, N-terminally processed; ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expr [...] | 0.512 |