Your Input: | |||||
| Mlycd | Malonyl-CoA decarboxylase, mitochondrial; Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in mus [...] (492 aa) | ||||
| Slc25a20 | Mitochondrial carnitine/acylcarnitine carrier protein; Mediates the transport of acylcarnitines of different length across the mitochondrial inner membrane from the cytosol to the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. (301 aa) | ||||
| Got2 | Aspartate aminotransferase, mitochondrial; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids. (430 aa) | ||||
| Plp1 | Myelin proteolipid protein; This is the major myelin protein from the central nervous system. It plays an important role in the formation or maintenance of the multilamellar structure of myelin; Belongs to the myelin proteolipid protein family. (277 aa) | ||||
| Plp2 | Proteolipid protein 2; May play a role in cell differentiation in the intestinal epithelium. (152 aa) | ||||
| Hibadh | 3-hydroxyisobutyrate dehydrogenase, mitochondrial; Belongs to the HIBADH-related family. 3-hydroxyisobutyrate dehydrogenase subfamily. (335 aa) | ||||
| Alb | Serum albumin; Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (By similarity). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (B [...] (608 aa) | ||||
| Hmgcl | Hydroxymethylglutaryl-CoA lyase, mitochondrial; Mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase that catalyzes a cation-dependent cleavage of (S)-3-hydroxy-3- methylglutaryl-CoA into acetyl-CoA and acetoacetate, a key step in ketogenesis. Terminal step in leucine catabolism. Ketone bodies (beta- hydroxybutyrate, acetoacetate and acetone) are essential as an alternative source of energy to glucose, as lipid precursors and as regulators of metabolism. (325 aa) | ||||
| Aco2 | Aconitate hydratase, mitochondrial; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate; Belongs to the aconitase/IPM isomerase family. (780 aa) | ||||
| Glud1 | Glutamate dehydrogenase 1, mitochondrial; Mitochondrial glutamate dehydrogenase that converts L- glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle. May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (558 aa) | ||||
| Ckmt2 | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (By similarity). (419 aa) | ||||
| Slc25a5 | ADP/ATP translocase 2, N-terminally processed; Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. As part of the mitotic spindle-associated MMXD complex it may play a role in chromosome segregation (By similarity). (298 aa) | ||||
| Cs | Citrate synthase, mitochondrial; Belongs to the citrate synthase family. (464 aa) | ||||
| Pdzd4 | PDZ domain-containing protein 4. (772 aa) | ||||
| Ckb | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (381 aa) | ||||
| Ckmt1 | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (418 aa) | ||||
| Acaa2 | 3-ketoacyl-CoA thiolase, mitochondrial; In the production of energy from fats, this is one of the enzymes that catalyzes the last step of the mitochondrial beta- oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA. Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain unbranched 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms. Also catalyzes the condensation of two acetyl-CoA molecules into acetoacetyl-CoA and could be involved in the production of ketone bodies. Also displays hydrolase activit [...] (397 aa) | ||||
| Pcca | Propionyl-CoA carboxylase alpha chain, mitochondrial; This is one of the 2 subunits of the biotin-dependent propionyl-CoA carboxylase (PCC), a mitochondrial enzyme involved in the catabolism of odd chain fatty acids, branched-chain amino acids isoleucine, threonine, methionine, and valine and other metabolites. Propionyl-CoA carboxylase catalyzes the carboxylation of propionyl- CoA/propanoyl-CoA to D-methylmalonyl-CoA/(S)-methylmalonyl-CoA (By similarity). Within the holoenzyme, the alpha subunit catalyzes the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl car [...] (724 aa) | ||||
| Aldh5a1 | Succinate-semialdehyde dehydrogenase, mitochondrial; Catalyzes one step in the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA); Belongs to the aldehyde dehydrogenase family. (523 aa) | ||||
| Pdk2 | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial; Kinase that plays a key role in the regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate dehydrogenase decreases glucose utilization and increases fat metabolism. Mediates cellular [...] (407 aa) | ||||
| Aldh4a1 | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial; Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma- semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes (By similarity). (562 aa) | ||||
| Ins1 | Insulin-1 A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (108 aa) | ||||
| Hk3 | Hexokinase-3; Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D- fructose 6-phosphate, respectively). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6- phosphate; Belongs to the hexokinase family. (922 aa) | ||||
| Csl | Citrate synthase; Belongs to the citrate synthase family. (466 aa) | ||||
| Gstz1 | Maleylacetoacetate isomerase; Probable bifunctional enzyme showing minimal glutathione- conjugating activity with ethacrynic acid and 7-chloro-4-nitrobenz-2- oxa-1, 3-diazole and maleylacetoacetate isomerase activity. Has also low glutathione peroxidase activity with t-butyl and cumene hydroperoxides. Is able to catalyze the glutathione dependent oxygenation of dichloroacetic acid to glyoxylic acid (By similarity). Belongs to the GST superfamily. Zeta family. (216 aa) | ||||
| Aldh7a1 | Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism (By similarity). (539 aa) | ||||
| Aldh6a1 | Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial; Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA (By similarity). (535 aa) | ||||
| Hmgcs2 | Hydroxymethylglutaryl-CoA synthase, mitochondrial; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase. (508 aa) | ||||
| Ogdh | 2-oxoglutarate dehydrogenase, mitochondrial; 2-oxoglutarate dehydrogenase (E1) component of the 2- oxoglutarate dehydrogenase complex, which mediates the decarboxylation of alpha-ketoglutarate. The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). The 2-oxoglutarate dehydrogenase complex is mainly active in the mitochondrion. A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl- Co [...] (1034 aa) | ||||
| Oxct2a | Succinyl-CoA:3-ketoacid coenzyme A transferase 2A, mitochondrial; Key enzyme for ketone body catabolism. Transfers the CoA moiety from succinate to acetoacetate. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). Probably play and important roles in the energy metabolism of spermatozoa. (520 aa) | ||||
| Gcg | Glicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia (By similarity). GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a [...] (180 aa) | ||||
| Aco1 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding; Belongs to the aconitase/IPM isomerase family. (889 aa) | ||||
| Kyat3 | Kynurenine--oxoglutarate transaminase 3; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). May catalyze the beta-elimination of S-conjugates and Se-conjugates of L- (seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond (By similarity). Has transaminase activity towards L-kynurenine, tryptophan, phenylalanine, serine, cysteine, methionine, histidine, glutamine and asparagine with glyoxylate as an amino group acceptor (in vitro). Has lower activity with 2-oxoglutarate as amino group acceptor (in vitro). (455 aa) | ||||
| Coasy | Phosphopantetheine adenylyltransferase; Bifunctional enzyme that catalyzes the fourth and fifth sequential steps of CoA biosynthetic pathway. The fourth reaction is catalyzed by the phosphopantetheine adenylyltransferase, coded by the coaD domain; the fifth reaction is catalyzed by the dephospho-CoA kinase, coded by the coaE domain. May act as a point of CoA biosynthesis regulation; In the central section; belongs to the eukaryotic CoaD family. (563 aa) | ||||
| Oxct1 | Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; Key enzyme for ketone body catabolism. Transfers the CoA moiety from succinate to acetoacetate. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). (520 aa) | ||||
| Hadhb | Trifunctional enzyme subunit beta, mitochondrial; Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional enz [...] (475 aa) | ||||
| Bdh1 | D-beta-hydroxybutyrate dehydrogenase, mitochondrial. (343 aa) | ||||
| Gapdh | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] (359 aa) | ||||
| Pank2 | Pantothenate kinase 2 (Hallervorden-Spatz syndrome). (443 aa) | ||||
| Gm6169 | Predicted gene 6169. (152 aa) | ||||
| Gm3839 | Glyceraldehyde-3-phosphate dehydrogenase. (333 aa) | ||||
| Ckm | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (381 aa) | ||||
| Ins2 | Insulin-2 A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa) | ||||
| Gm10358 | Glyceraldehyde-3-phosphate dehydrogenase. (333 aa) | ||||
| Hmgcs1 | Hydroxymethylglutaryl-CoA synthase, cytoplasmic; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase. (520 aa) | ||||