STRINGSTRING
Pxmp2 Pxmp2 Brdt Brdt Slc13a3 Slc13a3 Acss2 Acss2 Acss1 Acss1 Parp1 Parp1 Slc25a10 Slc25a10 Sirt3 Sirt3 Banf1 Banf1 Esco1 Esco1 Crebbp Crebbp Esco2 Esco2 Slc25a1 Slc25a1 Acot4 Acot4 Slc5a8 Slc5a8 Acsf3 Acsf3 Slc25a11 Slc25a11 Gcdh Gcdh Sirt7 Sirt7 Cdyl Cdyl Sirt2 Sirt2 Fasn Fasn Mcee Mcee Sirt5 Sirt5 Mmut Mmut Acss3 Acss3 Slc16a3 Slc16a3 Taf1 Taf1 Dpf2 Dpf2 Sirt1 Sirt1 Bdh1 Bdh1 Kat5 Kat5 Cecr2 Cecr2 Oxct1 Oxct1 Acly Acly Crat Crat Oxct2a Oxct2a Hdac1 Hdac1 Mtor Mtor Kat2a Kat2a Brd9 Brd9 Mlycd Mlycd Ogdh Ogdh Aldh6a1 Aldh6a1 Slc16a1 Slc16a1 Kat6a Kat6a Slc25a20 Slc25a20 Acat1 Acat1 Kat8 Kat8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Pxmp2Peroxisomal membrane protein 2; Seems to be involved in pore-forming activity and may contribute to the unspecific permeability of the peroxisomal membrane. (193 aa)
BrdtBromodomain testis-specific protein; Testis-specific chromatin protein that specifically binds histone H4 acetylated at 'Lys-5' and 'Lys-8' (H4K5ac and H4K8ac, respectively) and plays a key role in spermatogenesis. Required in late pachytene spermatocytes: plays a role in meiotic and post-meiotic cells by binding to acetylated histones at the promoter of specific meiotic and post-meiotic genes, facilitating their activation at the appropriate time. In the post-meiotic phase of spermatogenesis, binds to hyperacetylated histones and participates in their general removal from DNA. Also re [...] (956 aa)
Slc13a3Solute carrier family 13 member 3; High-affinity sodium-dicarboxylate cotransporter that accepts a range of substrates with 4-6 carbon atoms, including succinate, alpha-ketoglutarate and N-acetylaspartate. The stoichiometry is probably 3 Na(+) for 1 divalent succinate. (600 aa)
Acss2Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate but can also utilize propionate with a much lower affinity ; Belongs to the ATP-dependent AMP-binding enzyme family. (701 aa)
Acss1Acetyl-coenzyme A synthetase 2-like, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity. Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions. Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient. (682 aa)
Parp1Poly [ADP-ribose] polymerase 1; Poly-ADP-ribosyltransferase that mediates poly-ADP- ribosylation of proteins and plays a key role in DNA repair. Mainly mediates glutamate and aspartate ADP-ribosylation of target proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of glutamate and aspartate residues and further ADP- ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units. Mediates the poly(ADP-ribosyl)ation of a number of proteins, including itself, APLF an [...] (1014 aa)
Slc25a10Mitochondrial dicarboxylate carrier; Involved in translocation of malonate, malate and succinate in exchange for phosphate, sulfate, sulfite or thiosulfate across mitochondrial inner membrane. (287 aa)
Sirt3NAD-dependent protein deacetylase sirtuin-3; NAD-dependent protein deacetylase. Activates or deactivates mitochondrial target proteins by deacetylating key lysine residues. Known targets include ACSS1, IDH, GDH, PDHA1, SOD2, LCAD, SDHA and the ATP synthase subunit ATP5PO. Contributes to the regulation of the cellular energy metabolism. Important for regulating tissue-specific ATP levels. In response to metabolic stress, deacetylates transcription factor FOXO3 and recruits FOXO3 and mitochondrial RNA polymerase POLRMT to mtDNA to promote mtDNA transcription. Acts as a regulator of ceram [...] (257 aa)
Banf1Barrier-to-autointegration factor, N-terminally processed; Plays fundamental roles in nuclear assembly, chromatin organization, gene expression and gonad development. May potently compress chromatin structure and be involved in membrane recruitment and chromatin decondensation during nuclear assembly. Contains 2 non- specific dsDNA-binding sites which may promote DNA cross-bridging. Belongs to the BAF family. (89 aa)
Esco1N-acetyltransferase ESCO1; Acetyltransferase required for the establishment of sister chromatid cohesion. Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3. (843 aa)
CrebbpHistone lysine acetyltransferase CREBBP; Acetylates histones, giving a specific tag for transcriptional activation (By similarity). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes (By similarity). Acts as a coactivator of ALX1 (By similarity). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-ARNTL/BMAL1 and CLOCK- ARNTL/BMAL1 heterodimers (By simila [...] (2441 aa)
Esco2N-acetyltransferase ESCO2; Acetyltransferase required for the establishment of sister chromatid cohesion. Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3. (592 aa)
Slc25a1Tricarboxylate transport protein, mitochondrial; Citrate transporter that mediates the exchange of mitochondrial citrate for cytosolic malate. Also able to mediate the exchange of citrate for isocitrate, phosphoenolpyruvate, cis- but not trans-aconitate and to a lesser extend maleate and succinate. Important for the bioenergetics of hepatic cells as it provides a carbon source for fatty acid and sterol biosyntheses, and NAD(+) for the glycolytic pathway. Required for proper neuromuscular junction formation. Belongs to the mitochondrial carrier (TC 2.A.29) family. (311 aa)
Acot4Peroxisomal succinyl-coenzyme A thioesterase; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. In contrast to human peroxisomal succinyl-coenzyme A thioesterase/ACOT4, mouse ACOT4 is essentially a succinyl-CoA thioesterase with no activity with medium to long chain saturated acyl- CoAs and with a low activity toward glutaryl-CoA. Belongs to the C/M/P thioester hydrolase family. (421 aa)
Slc5a8Sodium-coupled monocarboxylate transporter 1; Acts as an electrogenic sodium (Na(+)) and chloride (Cl-)- dependent sodium-coupled solute transporter, including transport of monocarboxylates (short-chain fatty acids including L-lactate, D- lactate, pyruvate, acetate, propionate, valerate and butyrate), lactate, mocarboxylate drugs (nicotinate, benzoate, salicylate and 5- aminosalicylate) and ketone bodies (beta-D-hydroxybutyrate, acetoacetate and alpha-ketoisocaproate), with a Na(+):substrate stoichiometry of between 4:1 and 2:1. Catalyzes passive carrier mediated diffusion of iodide. M [...] (611 aa)
Acsf3Malonate--CoA ligase ACSF3, mitochondrial; Catalyzes the initial reaction in intramitochondrial fatty acid synthesis, by activating malonate and methylmalonate, but not acetate, into their respective CoA thioester. May have some preference toward very-long-chain substrates. (583 aa)
Slc25a11Mitochondrial 2-oxoglutarate/malate carrier protein; Catalyzes the transport of 2-oxoglutarate across the inner mitochondrial membrane in an electroneutral exchange for malate or other dicarboxylic acids, and plays an important role in several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (By similarity). Involved in the regulation of apoptosis. Belongs to the mi [...] (314 aa)
GcdhGlutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L- hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor; Belongs to the acyl-CoA dehydrogenase family. (447 aa)
Sirt7NAD-dependent protein deacetylase sirtuin-7; NAD-dependent protein-lysine deacylase that can act both as a deacetylase or deacylase (desuccinylase, depropionylase and deglutarylase), depending on the context. Specifically mediates deacetylation of histone H3 at 'Lys-18' (H3K18Ac) (By similarity). In contrast to other histone deacetylases, displays strong preference for a specific histone mark, H3K18Ac, directly linked to control of gene expression (By similarity). H3K18Ac is mainly present around the transcription start site of genes and has been linked to activation of nuclear hormone [...] (402 aa)
CdylChromodomain Y-like protein; [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape. Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing [...] (593 aa)
Sirt2NAD-dependent protein deacetylase sirtuin-2; NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and alpha-tubulin as well as many other proteins such as key transcription factors. Participates in the modulation of multiple and diverse biological processes such as cell cycle control, genomic integrity, microtubule dynamics, cell differentiation, metabolic networks, and autophagy. Plays a major role in the control of cell cycle progression and genomic stability. Functions in the antephase checkpoint preventing precocious mitotic entry in response to microtu [...] (389 aa)
Fasn3-hydroxyacyl-[acyl-carrier-protein] dehydratase; Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities as an acyl carrier protein. (2504 aa)
MceeMethylmalonyl-CoA epimerase, mitochondrial; Belongs to the methylmalonyl-CoA epimerase family. (178 aa)
Sirt5NAD-dependent protein deacylase sirtuin-5, mitochondrial; NAD-dependent lysine demalonylase, desuccinylase and deglutarylase that specifically removes malonyl, succinyl and glutaryl groups on target proteins. Activates CPS1 and contributes to the regulation of blood ammonia levels during prolonged fasting: acts by mediating desuccinylation and deglutarylation of CPS1, thereby increasing CPS1 activity in response to elevated NAD levels during fasting. Activates SOD1 by mediating its desuccinylation, leading to reduced reactive oxygen species (By similarity). Activates SHMT2 by mediating [...] (310 aa)
MmutMethylmalonyl-CoA mutase, mitochondrial; Involved in the degradation of several amino acids, odd-chain fatty acids and cholesterol via propionyl-CoA to the tricarboxylic acid cycle; Belongs to the methylmalonyl-CoA mutase family. (748 aa)
Acss3Acyl-CoA synthetase short-chain family member 3, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids (By similarity). Propionate is the preferred substrate but can also utilize acetate and butyrate with a much lower affinity (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (682 aa)
Slc16a3Monocarboxylate transporter 4; Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate (By similarity); Belongs to the major facilitator superfamily. Monocarboxylate porter (TC 2.A.1.13) family. (470 aa)
Taf1Transcription initiation factor TFIID subunit 1; Largest component and core scaffold of the TFIID basal transcription factor complex. Contains novel N- and C-terminal Ser/Thr kinase domains which can autophosphorylate or transphosphorylate other transcription factors. Phosphorylates TP53 on 'Thr-55' which leads to MDM2-mediated degradation of TP53. Phosphorylates GTF2A1 and GTF2F1 on Ser residues. Possesses DNA-binding activity. Essential for progression of the G1 phase of the cell cycle. Exhibits histone acetyltransferase activity towards histones H3 and H4. Belongs to the TAF1 family. (1893 aa)
Dpf2Zinc finger protein ubi-d4; Plays an active role in transcriptional regulation by binding modified histones H3 and H4. Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (By similarity). Might also have a role in the development and maturation of lymphoid cells. Involved in the regulation of non-canonical NF- kappa-B pathway (By similarity). (405 aa)
Sirt1NAD-dependent protein deacetylase sirtuin-1; NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (By similarity). Deacetylates a broad range of transcription factors and coregulators, thereby regulating ta [...] (737 aa)
Bdh1D-beta-hydroxybutyrate dehydrogenase, mitochondrial. (343 aa)
Kat5Histone acetyltransferase KAT5; Catalytic subunit of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (By similarity). This modification may both alter nucleosome-DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (By similarity). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor me [...] (513 aa)
Cecr2Cat eye syndrome critical region protein 2 homolog; Chromatin reader component of histone-modifying complexes, such as the CERF (CECR2-containing-remodeling factor) complex and ISWI- type complex (By similarity). It thereby plays a role in various processes during development: required during embryogenesis for neural tube closure and inner ear development. In adults, required for spermatogenesis, via the formation of ISWI-type chromatin complexes. In histone-modifying complexes, CECR2 recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (By simi [...] (1425 aa)
Oxct1Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; Key enzyme for ketone body catabolism. Transfers the CoA moiety from succinate to acetoacetate. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). (520 aa)
AclyATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis; In the C-terminal section; belongs to the succinate/malate CoA ligase alpha subunit family. (1101 aa)
CratCarnitine O-acetyltransferase; Catalyzes the reversible transfer of acyl groups from carnitine to coenzyme A (CoA) and regulates the acyl-CoA/CoA ratio. Also plays a crucial role in the transport of fatty acids for beta- oxidation. May be specific for short chain fatty acids. Belongs to the carnitine/choline acetyltransferase family. (626 aa)
Oxct2aSuccinyl-CoA:3-ketoacid coenzyme A transferase 2A, mitochondrial; Key enzyme for ketone body catabolism. Transfers the CoA moiety from succinate to acetoacetate. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). Probably play and important roles in the energy metabolism of spermatozoa. (520 aa)
Hdac1Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] (482 aa)
MtorSerine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] (2549 aa)
Kat2aHistone acetyltransferase KAT2A; Protein lysine acyltransferase that can act as a acetyltransferase, glutaryltransferase or succinyltransferase, depending on the context. Acts as a histone lysine succinyltransferase: catalyzes succinylation of histone H3 on 'Lys-79' (H3K79succ), with a maximum frequency around the transcription start sites of genes (By similarity). Succinylation of histones gives a specific tag for epigenetic transcription activation (By similarity). Association with the 2-oxoglutarate dehydrogenase complex, which provides succinyl-CoA, is required for histone succinyl [...] (830 aa)
Brd9Bromodomain-containing protein 9; Plays a role in chromatin remodeling and regulation of transcription. Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated. Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP- dependent manner. (597 aa)
MlycdMalonyl-CoA decarboxylase, mitochondrial; Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in mus [...] (492 aa)
Ogdh2-oxoglutarate dehydrogenase, mitochondrial; 2-oxoglutarate dehydrogenase (E1) component of the 2- oxoglutarate dehydrogenase complex, which mediates the decarboxylation of alpha-ketoglutarate. The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). The 2-oxoglutarate dehydrogenase complex is mainly active in the mitochondrion. A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl- Co [...] (1034 aa)
Aldh6a1Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial; Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA (By similarity). (535 aa)
Slc16a1Monocarboxylate transporter 1; Proton-coupled monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate. Depending on the tissue and on cicumstances, mediates the import or export of lactic acid and ketone bodies. Required for normal nutrient assimilation, increase of white adipose tissue and body weight gain when on a high-fat diet. Plays a role in cellular responses to [...] (493 aa)
Kat6aHistone acetyltransferase KAT6A; Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2 (By similarity). Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML (By similarity). (2003 aa)
Slc25a20Mitochondrial carnitine/acylcarnitine carrier protein; Mediates the transport of acylcarnitines of different length across the mitochondrial inner membrane from the cytosol to the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. (301 aa)
Acat1Acetyl-CoA acetyltransferase, mitochondrial; This is one of the enzymes that catalyzes the last step of the mitochondrial beta-oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA. Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms. The activity of the enzyme is reversible and it can also catalyze the condensation of two acetyl-CoA molecules into acetoacetyl-CoA. Thereby, it plays a major role in ketone body metabolism. Belongs to the thiolase-l [...] (424 aa)
Kat8Histone acetyltransferase KAT8; Histone acetyltransferase which may be involved in transcriptional activation. May influence the function of ATM. As part of the MSL complex it is involved in acetylation of nucleosomal histone H4 producing specifically H4K16ac. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. That activity is less specific than the one of the MSL complex. Can also acetylate TP53/p53 at 'Lys-120'. Belongs to the MYST (SAS/MOZ) family. (458 aa)
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (38%) [HD]