node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Agxt2 | Asl | ENSMUSP00000022858 | ENSMUSP00000124579 | Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | 0.458 |
Agxt2 | Ddah1 | ENSMUSP00000022858 | ENSMUSP00000029845 | Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. | N(G),N(G)-dimethylarginine dimethylaminohydrolase 1; Hydrolyzes N(G),N(G)-dimethyl-L-arginine (ADMA) and N(G)- monomethyl-L-arginine (MMA) which act as inhibitors of NOS. Has therefore a role in the regulation of nitric oxide generation. Belongs to the DDAH family. | 0.844 |
Agxt2 | Ddah2 | ENSMUSP00000022858 | ENSMUSP00000007255 | Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. | N(G),N(G)-dimethylarginine dimethylaminohydrolase 2; Hydrolyzes N(G),N(G)-dimethyl-L-arginine (ADMA) and N(G)- monomethyl-L-arginine (MMA) which act as inhibitors of NOS. Has therefore a role in the regulation of nitric oxide generation (By similarity). | 0.811 |
Agxt2 | Gatm | ENSMUSP00000022858 | ENSMUSP00000028624 | Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. | Glycine amidinotransferase, mitochondrial; Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. | 0.422 |
Arg1 | Asl | ENSMUSP00000020161 | ENSMUSP00000124579 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | 0.961 |
Arg1 | Cd68 | ENSMUSP00000020161 | ENSMUSP00000018918 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Macrosialin; Could play a role in phagocytic activities of tissue macrophages, both in intracellular lysosomal metabolism and extracellular cell-cell and cell-pathogen interactions. Binds to tissue- and organ-specific lectins or selectins, allowing homing of macrophage subsets to particular sites. Rapid recirculation of CD68 from endosomes and lysosomes to the plasma membrane may allow macrophages to crawl over selectin-bearing substrates or other cells; Belongs to the LAMP family. | 0.755 |
Arg1 | Gapdh | ENSMUSP00000020161 | ENSMUSP00000113942 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | 0.692 |
Arg1 | Gatm | ENSMUSP00000020161 | ENSMUSP00000028624 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Glycine amidinotransferase, mitochondrial; Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. | 0.937 |
Arg1 | Gm10358 | ENSMUSP00000020161 | ENSMUSP00000148326 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Glyceraldehyde-3-phosphate dehydrogenase. | 0.465 |
Arg1 | Gm3839 | ENSMUSP00000020161 | ENSMUSP00000138396 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Glyceraldehyde-3-phosphate dehydrogenase. | 0.465 |
Arg1 | Nos2 | ENSMUSP00000020161 | ENSMUSP00000018610 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2. As component of the iNOS- S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (By similarity [...] | 0.984 |
Arg1 | Nos3 | ENSMUSP00000020161 | ENSMUSP00000030834 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Nitric oxide synthase, endothelial; Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. May play a significant role in normal and abnormal limb development; Belongs to the NOS family. | 0.951 |
Arg1 | Pxdn | ENSMUSP00000020161 | ENSMUSP00000113703 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | Peroxidasin homolog; Displays low peroxidase activity and is likely to participate in H(2)O(2) metabolism and peroxidative reactions in the cardiovascular system (By similarity). Plays a role in extracellular matrix formation. | 0.535 |
Asl | Agxt2 | ENSMUSP00000124579 | ENSMUSP00000022858 | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure. | 0.458 |
Asl | Arg1 | ENSMUSP00000124579 | ENSMUSP00000020161 | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | 0.961 |
Asl | Gatm | ENSMUSP00000124579 | ENSMUSP00000028624 | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | Glycine amidinotransferase, mitochondrial; Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. | 0.879 |
Asl | Nos2 | ENSMUSP00000124579 | ENSMUSP00000018610 | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2. As component of the iNOS- S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (By similarity [...] | 0.939 |
Asl | Nos3 | ENSMUSP00000124579 | ENSMUSP00000030834 | Argininosuccinate lyase; Belongs to the lyase 1 family. Argininosuccinate lyase subfamily. | Nitric oxide synthase, endothelial; Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. May play a significant role in normal and abnormal limb development; Belongs to the NOS family. | 0.941 |
Cd68 | Arg1 | ENSMUSP00000018918 | ENSMUSP00000020161 | Macrosialin; Could play a role in phagocytic activities of tissue macrophages, both in intracellular lysosomal metabolism and extracellular cell-cell and cell-pathogen interactions. Binds to tissue- and organ-specific lectins or selectins, allowing homing of macrophage subsets to particular sites. Rapid recirculation of CD68 from endosomes and lysosomes to the plasma membrane may allow macrophages to crawl over selectin-bearing substrates or other cells; Belongs to the LAMP family. | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. | 0.755 |
Cd68 | Gapdh | ENSMUSP00000018918 | ENSMUSP00000113942 | Macrosialin; Could play a role in phagocytic activities of tissue macrophages, both in intracellular lysosomal metabolism and extracellular cell-cell and cell-pathogen interactions. Binds to tissue- and organ-specific lectins or selectins, allowing homing of macrophage subsets to particular sites. Rapid recirculation of CD68 from endosomes and lysosomes to the plasma membrane may allow macrophages to crawl over selectin-bearing substrates or other cells; Belongs to the LAMP family. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | 0.885 |