Your Input: | |||||
Slc16a1 | Monocarboxylate transporter 1; Proton-coupled monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate. Depending on the tissue and on cicumstances, mediates the import or export of lactic acid and ketone bodies. Required for normal nutrient assimilation, increase of white adipose tissue and body weight gain when on a high-fat diet. Plays a role in cellular responses to [...] (493 aa) | ||||
Gpam | Glycerol-3-phosphate acyltransferase 1, mitochondrial; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Belongs to the GPAT/DAPAT family. (827 aa) | ||||
Sco2 | Protein SCO2 homolog, mitochondrial; Copper metallochaperone essential for the synthesis and maturation of cytochrome c oxidase subunit II (MT-CO2/COX2). Involved in transporting copper to the Cu(A) site on MT-CO2/COX2. Also acts as a thiol-disulfide oxidoreductase to regulate the redox state of the cysteines in SCO1 during maturation of MT-CO2/COX2. Belongs to the SCO1/2 family. (255 aa) | ||||
Adck1 | AarF domain-containing protein kinase 1; Appears to be essential for maintaining mitochondrial cristae formation and mitochondrial function by acting via YME1L1 in a kinase- independent manner to regulate essential mitochondrial structural proteins OPA1 and IMMT (By similarity). The action of this enzyme is not yet clear. It is not known if it has protein kinase activity and what type of substrate it would phosphorylate (Ser, Thr or Tyr) (Probable). (525 aa) | ||||
Dmac2l | ATP synthase subunit s, mitochondrial; Involved in regulation of mitochondrial membrane ATP synthase. Necessary for H(+) conduction of ATP synthase. Facilitates energy-driven catalysis of ATP synthesis by blocking a proton leak through an alternative proton exit pathway. (200 aa) | ||||
Ldha | L-lactate dehydrogenase A chain; Belongs to the LDH/MDH superfamily. LDH family. (361 aa) | ||||
Ndufa4 | Cytochrome c oxidase subunit NDUFA4; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport [...] (82 aa) | ||||
Ndufa9 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (377 aa) | ||||
Cox4i1 | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives tran [...] (169 aa) | ||||
Pet100 | Protein PET100 homolog, mitochondrial; Belongs to the PET100 family. (76 aa) | ||||
Tmem70 | Transmembrane protein 70, mitochondrial; Involved in biogenesis of mitochondrial ATP synthase. Belongs to the TMEM70 family. (254 aa) | ||||
Prkag1 | 5'-AMP-activated protein kinase subunit gamma-1; AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a [...] (330 aa) | ||||
Tomm70a | Mitochondrial import receptor subunit TOM70; Receptor that accelerates the import of all mitochondrial precursor proteins. (611 aa) | ||||
Slc25a12 | Calcium-binding mitochondrial carrier protein Aralar1; Mitochondrial and calcium-binding carrier that catalyzes the calcium-dependent exchange of cytoplasmic glutamate with mitochondrial aspartate across the mitochondrial inner membrane. May have a function in the urea cycle. (677 aa) | ||||
Gatb | Glutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). Belongs to the GatB/GatE family. GatB subfamily. (557 aa) | ||||
Gapdh | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] (359 aa) | ||||
Atp5pb | ATP synthase F(0) complex subunit B1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechani [...] (256 aa) | ||||
Mthfd1l | Monofunctional C1-tetrahydrofolate synthase, mitochondrial; May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism in embryonic an transformed cells complementing thus the enzymatic activities of MTHFD2; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (977 aa) | ||||
Hk1 | Hexokinase-1; Catalyzes the phosphorylation of various hexoses, such as D- glucose, D-glucosamine, D-fructose, D-mannose and 2-deoxy-D-glucose, to hexose 6-phosphate (D-glucose 6-phosphate, D-glucosamine 6-phosphate, D-fructose 6-phosphate, D-mannose 6-phosphate and 2-deoxy-D-glucose 6- phosphate, respectively). Does not phosphorylate N-acetyl-D-glucosamine (By similarity). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (By similarity). Involved in innate immunity and inflammation by acting as a pattern recognition receptor f [...] (945 aa) | ||||
Atp5c1 | ATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa) | ||||
Sirt4 | NAD-dependent protein lipoamidase sirtuin-4, mitochondrial; Acts as NAD-dependent protein lipoamidase, ADP-ribosyl transferase and deacetylase. Catalyzes more efficiently removal of lipoyl- and biotinyl- than acetyl-lysine modifications. Inhibits the pyruvate dehydrogenase complex (PDH) activity via the enzymatic hydrolysis of the lipoamide cofactor from the E2 component, DLAT, in a phosphorylation-independent manner. Catalyzes the transfer of ADP-ribosyl groups onto target proteins, including mitochondrial GLUD1, inhibiting GLUD1 enzyme activity. Acts as a negative regulator of mitoch [...] (333 aa) | ||||
Sdhc | Succinate dehydrogenase cytochrome b560 subunit, mitochondrial; Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). (169 aa) | ||||
Akt3 | RAC-gamma serine/threonine-protein kinase; AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial fo [...] (479 aa) | ||||
Cox4i2 | Cytochrome c oxidase subunit 4 isoform 2, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives tran [...] (172 aa) | ||||
Uqcc1 | Ubiquinol-cytochrome-c reductase complex assembly factor 1; Required for the assembly of the ubiquinol-cytochrome c reductase complex (mitochondrial respiratory chain complex III or cytochrome b-c1 complex). Involved in cytochrome b translation and/or stability. (295 aa) | ||||
Coq8b | Atypical kinase COQ8B, mitochondrial; Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration. Its substrate specificity is unclear: does not show any protein kinase activity. Probably acts as a small molecule kinase, possibly a lipid kinase that phosphorylates a prenyl lipid in the ubiquinone biosynthesis pathway. Required for podocyte migration. (533 aa) | ||||
Akt2 | RAC-beta serine/threonine-protein kinase; AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinases, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the [...] (481 aa) | ||||
Ndufs7 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (224 aa) | ||||
Mtor | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] (2549 aa) | ||||
Miga2 | Mitoguardin 2; Regulator of mitochondrial fusion. Acts by forming homo- and heterodimers at the mitochondrial outer membrane and facilitating the formation of PLD6/MitoPLD dimers. May act by regulating phospholipid metabolism via PLD6/MitoPLD (By similarity). (593 aa) | ||||
Uqcc3 | Ubiquinol-cytochrome-c reductase complex assembly factor 3; Required for the assembly of the ubiquinol-cytochrome c reductase complex (mitochondrial respiratory chain complex III or cytochrome b-c1 complex), mediating cytochrome b recruitment and probably stabilization within the complex. Thereby, plays an important role in ATP production by mitochondria. Cardiolipin-binding protein, it may also control the cardiolipin composition of mitochondria membranes and their morphology; Belongs to the UQCC3 family. (89 aa) | ||||
Ndufb6 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (128 aa) | ||||
Atp5g1 | ATP synthase F(0) complex subunit C1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...] (136 aa) | ||||
mt-Cytb | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (381 aa) | ||||
mt-Nd6 | NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (172 aa) | ||||
mt-Nd5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (607 aa) | ||||
mt-Nd4 | NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (459 aa) | ||||
mt-Nd3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa) | ||||
mt-Co3 | Cytochrome c oxidase subunit 3; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (261 aa) | ||||
mt-Atp6 | ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa) | ||||
mt-Co2 | Cytochrome c oxidase subunit 2; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (227 aa) | ||||
mt-Co1 | Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (514 aa) | ||||
mt-Nd2 | NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (345 aa) | ||||
mt-Nd1 | NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (318 aa) | ||||
Pgk1 | Phosphoglycerate kinase 1; Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3- diphosphoglycerate to 3-phosphoglycerate. In addition to its role as a glycolytic enzyme, it seems that PGK-1 acts as a polymerase alpha cofactor protein (primer recognition protein). May play a role in sperm motility. (417 aa) | ||||
Uqcrh | Cytochrome b-c1 complex subunit 6, mitochondrial; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradie [...] (89 aa) | ||||
Slc25a3 | Phosphate carrier protein, mitochondrial; Transport of phosphate groups from the cytosol to mitochondrial matrix. Phosphate is cotransported with H(+). May play a role regulation of the mitochondrial permeability transition pore (mPTP) (By similarity). (357 aa) | ||||
Pmpca | Mitochondrial-processing peptidase subunit alpha; Substrate recognition and binding subunit of the essential mitochondrial processing protease (MPP), which cleaves the mitochondrial sequence off newly imported precursors proteins. (524 aa) | ||||
Ldhd | Probable D-lactate dehydrogenase, mitochondrial; Involved in D-lactate, but not L-lactate catabolic process. Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (484 aa) | ||||
Immt | MICOS complex subunit Mic60; Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology. (757 aa) | ||||
Alas2 | 5-aminolevulinate synthase, erythroid-specific, mitochondrial. (587 aa) | ||||
Angel2 | Protein angel homolog 2. (544 aa) | ||||
Coa6 | Cytochrome c oxidase assembly factor 6 homolog; Involved in the maturation of the mitochondrial respiratory chain complex IV subunit MT-CO2/COX2. Thereby, may regulate early steps of complex IV assembly. Mitochondrial respiratory chain complex IV or cytochrome c oxidase is the component of the respiratory chain that catalyzes the transfer of electrons from intermembrane space cytochrome c to molecular oxygen in the matrix and as a consequence contributes to the proton gradient involved in mitochondrial ATP synthesis. May also be required for efficient formation of respiratory supercomp [...] (79 aa) | ||||
Slc25a44 | Solute carrier family 25 member 44; Mitochondrial solute transporter which transports branched- chain amino acid (BCAA; valine, leucine and isoleucine) into mitochondria in brown adipose tissue (BAT). BAT is involved in BCAA catabolism and actively utilizes BCAA in the mitochondria for thermogenesis. (333 aa) | ||||
Higd1a | HIG1 domain family member 1A, mitochondrial; Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May play a role in the assembly of respiratory supercomplexes (By similarity). (95 aa) | ||||
Ttc19 | Tetratricopeptide repeat protein 19, mitochondrial; Required for the preservation of the structural and functional integrity of mitochondrial respiratory complex III by allowing the physiological turnover of the Rieske protein UQCRFS1. Involved in the clearance of UQCRFS1 N-terminal fragments, which are produced upon incorporation into the complex III and whose presence is detrimental for its catalytic activity. (365 aa) | ||||
Coa4 | Cytochrome c oxidase assembly factor 4 homolog, mitochondrial; Putative COX assembly factor; Belongs to the COA4 family. (87 aa) | ||||
Uqcrq | Cytochrome b-c1 complex subunit 8; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inn [...] (82 aa) | ||||
Fasn | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase; Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities as an acyl carrier protein. (2504 aa) | ||||
Hk3 | Hexokinase-3; Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D- fructose 6-phosphate, respectively). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6- phosphate; Belongs to the hexokinase family. (922 aa) | ||||
Pif1 | ATP-dependent DNA helicase PIF1; DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of both mitochondrial and nuclear genome stability. Efficiently unwinds G-quadruplex (G4) DNA structures and forked RNA-DNA hybrids. Resolves G4 structures, preventing replication pausing and double-strand breaks (DSBs) at G4 motifs. Involved in the maintenance of telomeric DNA. Inhibits telomere elongation, de novo telomere formation and telomere addition to DSBs via catalytic inhibition of telomerase. Reduces the processivity of telomerase by displacing active telomerase from DNA [...] (650 aa) | ||||
Cyp24a1 | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24-oxidation pathway, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25- dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24- oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. Hydroxylates at C-24 or C-25 other vitamin D active metabol [...] (514 aa) | ||||
Atf5 | Cyclic AMP-dependent transcription factor ATF-5; Transcription factor that either stimulates or represses gene transcription through binding of different DNA regulatory elements such as cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), ATF5-specific response element (ARE) (consensus: 5'- C[CT]TCT[CT]CCTT[AT]-3') but also the amino acid response element (AARE), present in many viral and cellular promoters. Critically involved, often in a cell type-dependent manner, in cell survival, proliferation, and differentiation. Its transcriptional activity is enhanced by CCND3 and s [...] (283 aa) | ||||
Uqcrfs1 | Cytochrome b-c1 complex subunit Rieske, mitochondrial; [Cytochrome b-c1 complex subunit Rieske, mitochondrial]: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and su [...] (274 aa) | ||||
Mrps34 | 28S ribosomal protein S34, mitochondrial; Required for mitochondrial translation, plays a role in maintaining the stability of the small ribosomal subunit and the 12S rRNA that are required for mitoribosome formation. Belongs to the mitochondrion-specific ribosomal protein mS34 family. (218 aa) | ||||
Nars2 | Probable asparagine--tRNA ligase, mitochondrial; Belongs to the class-II aminoacyl-tRNA synthetase family. (477 aa) | ||||
Recql4 | ATP-dependent DNA helicase Q4; DNA-dependent ATPase (By similarity). May play a role in development of the palate and the limbs. May modulate chromosome segregation. (1216 aa) | ||||
Ndufb10 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (176 aa) | ||||
Ndufv1 | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (464 aa) | ||||
Tsfm | Elongation factor Ts, mitochondrial; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (324 aa) | ||||
Lonp1 | Lon protease homolog, mitochondrial; ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix. May also have a chaperone function in the assembly of inner membrane protein complexes. Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome. Binds to mitochondrial promoters and RNA in a single-stranded, site-specific, and strand- specific manner. May regulate mi [...] (949 aa) | ||||
Cox8a | Cytochrome c oxidase subunit 8A, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane [...] (69 aa) | ||||
Lap3 | Cytosol aminopeptidase; Presumably involved in the processing and regular turnover of intracellular proteins. Catalyzes the removal of unsubstituted N- terminal amino acids from various peptides (By similarity). (519 aa) | ||||
Timm8b | Mitochondrial import inner membrane translocase subunit Tim8 B; Probable mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space (By similarity); Belongs to the small Tim family. (83 aa) | ||||
Foxred1 | FAD-dependent oxidoreductase domain-containing protein 1; Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). Involved in mid-late stages of complex I assembly. (493 aa) | ||||
Pdk3 | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial; Inhibits pyruvate dehydrogenase activity by phosphorylation of the E1 subunit PDHA1, and thereby regulates glucose metabolism and aerobic respiration. Can also phosphorylate PDHA2. Decreases glucose utilization and increases fat metabolism in response to prolonged fasting, and as adaptation to a high-fat diet. Plays a role in glucose homeostasis and in maintaining normal blood glucose levels in function of nutrient levels and under starvation. Plays a role in the generation of reactive oxygen species (By si [...] (415 aa) | ||||
Cox7a2 | Cytochrome c oxidase subunit 7A2, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembran [...] (83 aa) | ||||
Aars | Alanine--tRNA ligase, cytoplasmic; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain. (968 aa) | ||||
Eif2ak3 | Eukaryotic translation initiation factor 2-alpha kinase 3; Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2- alpha/EIF2S1) on 'Ser-52' during the unfolded protein response (UPR) and in response to low amino acid availability. Converts phosphorylated eIF-2-alpha/EIF2S1 either in a global protein synthesis inhibitor, leading to a reduced overall utilization of amino acids, or to a translation initiation activator of specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated [...] (1114 aa) | ||||
Slc25a4 | ADP/ATP translocase 1; Involved in mitochondrial ADP/ATP transport. Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane; Belongs to the mitochondrial carrier (TC 2.A.29) family. (298 aa) | ||||
Acsl1 | Long-chain-fatty-acid--CoA ligase 1; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation (By similarity). Preferentially uses palmitoleate, oleate and linoleate (By similarity). Preferentially activates arachidonate than epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs); Belongs to the ATP-dependent AMP-binding enzyme family. (699 aa) | ||||
Fgf21 | Fibroblast growth factor 21; Stimulates glucose uptake in differentiated adipocytes via the induction of glucose transporter SLC2A1/GLUT1 expression (but not SLC2A4/GLUT4 expression). Activity probably requires the presence of KLB; Belongs to the heparin-binding growth factors family. (210 aa) | ||||
Ndufc2 | NADH dehydrogenase [ubiquinone] 1 subunit C2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (120 aa) | ||||
Ldhb | L-lactate dehydrogenase B chain; Belongs to the LDH/MDH superfamily. LDH family. (334 aa) | ||||
Paics | Phosphoribosylaminoimidazole-succinocarboxamide synthase; In the C-terminal section; belongs to the AIR carboxylase family. Class II subfamily. (425 aa) | ||||
Atad3a | ATPase family AAA domain-containing protein 3; Essential for mitochondrial network organization, mitochondrial metabolism and cell growth at organism and cellular level. May play an important role in mitochondrial protein synthesis. May also participate in mitochondrial DNA replication. May bind to mitochondrial DNA D-loops and contribute to nucleoid stability. Required for enhanced channeling of cholesterol for hormone-dependent steroidogenesis (By similarity); Belongs to the AAA ATPase family. (591 aa) | ||||
Pmpcb | Mitochondrial-processing peptidase subunit beta; Catalytic subunit of the essential mitochondrial processing protease (MPP), which cleaves the mitochondrial sequence off newly imported precursors proteins (By similarity). Preferentially, cleaves after an arginine at position P2 (By similarity). Required for PINK1 turnover by coupling PINK1 mitochondrial import and cleavage, which results in subsequent PINK1 proteolysis (By similarity). Belongs to the peptidase M16 family. (489 aa) | ||||
Slc2a1 | Solute carrier family 2, facilitated glucose transporter member 1; Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake. Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (By similarity). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (By similarity); Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. Glucose transporter subfamily. (492 aa) | ||||
Tars2 | Threonine--tRNA ligase, mitochondrial; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged tRNA(Thr) via its editing domain. Belongs to the class-II aminoacyl-tRNA synthetase family. (723 aa) | ||||
Slc16a4 | Monocarboxylate transporter 5; Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate (By similarity). (500 aa) | ||||
Slc25a24 | Calcium-binding mitochondrial carrier protein SCaMC-1; Calcium-dependent mitochondrial solute carrier. Mediates the reversible, electroneutral exchange of Mg-ATP or Mg-ADP against phosphate ions, catalyzing the net uptake or efflux of adenine nucleotides across the mitochondrial inner membrane. Nucleotide transport is inactive when cytosolic calcium levels are low, and is activated by an increase in cytosolic calcium levels. May play a role in protecting cells against oxidative stress-induced cell death, probably by promoting the formation of calcium-phosphate precipitates in the mitoc [...] (475 aa) | ||||
Il1b | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells; Belongs to the IL-1 family. (269 aa) | ||||
Gatm | Glycine amidinotransferase, mitochondrial; Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. (423 aa) | ||||
Ifih1 | Interferon-induced helicase C domain-containing protein 1; Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and proinflammatory cytokines. Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long- dsRNA (>1 kb in length). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylat [...] (1025 aa) | ||||
Slc25a25 | Calcium-binding mitochondrial carrier protein SCaMC-2; Calcium-dependent mitochondrial solute carrier. Mitochondrial solute carriers shuttle metabolites, nucleotides, and cofactors through the mitochondrial inner membrane. May act as a ATP-Mg/Pi exchanger that mediates the transport of Mg-ATP in exchange for phosphate, catalyzing the net uptake or efflux of adenine nucleotides into or from the mitochondria (By similarity). (514 aa) | ||||
Atf3 | Cyclic AMP-dependent transcription factor ATF-3; This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Represses transcription from promoters with ATF sites. It may repress transcription by stabilizing the binding of inhibitory cofactors at the promoter (By similarity); Belongs to the bZIP family. ATF subfamily. (181 aa) | ||||
Fh1 | Fumarate hydratase, mitochondrial; Catalyzes the reversible stereospecific interconversion of fumarate to L-malate. Experiments in different species have demonstrated that specific isoforms of this protein act in defined pathways and favor one direction over the other (Probable). [Isoform Cytoplasmic]: Catalyzes the dehydration of L-malate to fumarate. Fumarate metabolism in the cytosol plays a role during urea cycle and arginine metabolism; fumarate being a by- product of the urea cycle and amino-acid catabolism. Also plays a role in DNA repair by promoting non-homologous end-joining [...] (507 aa) | ||||
Bcs1l | Mitochondrial chaperone BCS1; Chaperone necessary for the assembly of mitochondrial respiratory chain complex III. Plays an important role in the maintenance of mitochondrial tubular networks, respiratory chain assembly and formation of the LETM1 complex (By similarity). (418 aa) | ||||
Tyms | Thymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. (307 aa) | ||||
Il6 | Interleukin-6; Cytokine with a wide variety of biological functions. It is a potent inducer of the acute phase response. Plays an essential role in the final differentiation of B-cells into Ig-secreting cells Involved in lymphocyte and monocyte differentiation. Acts on B-cells, T-cells, hepatocytes, hematopoietic progenitor cells and cells of the CNS. Required for the generation of T(H)17 cells. Also acts as a myokine. It is discharged into the bloodstream after muscle contraction and acts to increase the breakdown of fats and to improve insulin resistance. It induces myeloma and plasm [...] (211 aa) | ||||
Uqcrc1 | Cytochrome b-c1 complex subunit 1, mitochondrial; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradie [...] (480 aa) | ||||
Tk1 | Thymidine kinase, cytosolic. (233 aa) | ||||
Atp5a1 | ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (553 aa) | ||||
Ndufb8 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (186 aa) | ||||
Gldc | Glycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH) (By similarity). Belongs to the GcvP family. (1025 aa) | ||||
Uqcc2 | Ubiquinol-cytochrome-c reductase complex assembly factor 2; Required for the assembly of the ubiquinol-cytochrome c reductase complex (mitochondrial respiratory chain complex III or cytochrome b-c1 complex). Plays a role in the modulation of respiratory chain activities such as oxygen consumption and ATP production and via its modulation of the respiratory chain activity can regulate skeletal muscle differentiation and insulin secretion by pancreatic beta-cells. Involved in cytochrome b translation and/or stability. (136 aa) | ||||
Eif2ak2 | Interferon-induced, double-stranded RNA-activated protein kinase; IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including west nile virus (WNV), sindbis virus (SV), foot-and-mouth virus (FMDV), semliki Forest virus (SFV) and lymphocytic choriomeningitis virus (LCMV). Inhibits viral replication via phosphorylation of the a [...] (515 aa) | ||||
Aars2 | Alanine--tRNA ligase, mitochondrial; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain. Belongs to the class-II aminoacyl-tRNA synthetase family. (980 aa) | ||||
Ndufa5 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (116 aa) | ||||
Myc | Myc proto-oncogene protein; Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Activates the transcription of growth-related genes. Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis. Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells. Functions with TAF6L to activate target gene expression through RNA polymerase II pause release. (454 aa) | ||||
Acod1 | Cis-aconitate decarboxylase; Involved in the inhibition of the inflammatory response. Acts as a negative regulator of the Toll-like receptors (TLRs)-mediated inflammatory innate response by stimulating the tumor necrosis factor alpha-induced protein TNFAIP3 expression via reactive oxygen species (ROS) in LPS-tolerized macrophages. Involved in antimicrobial response of innate immune cells; ACOD1-mediated itaconic acid production contributes to the antimicrobial activity of macrophages. Plays a role in the embryo implantation. (488 aa) | ||||
Dhfr | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA. (187 aa) | ||||
Sdha | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (664 aa) | ||||
Hif1a | Hypoxia-inducible factor 1-alpha; Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Heterodimerizes with ARNT; heterodimer binds to core DNA sequenc [...] (836 aa) | ||||
Cmpk2 | UMP-CMP kinase 2, mitochondrial; May participate in dUTP and dCTP synthesis in mitochondria. Is able to phosphorylate dUMP, dCMP, CMP, UMP and monophosphates of the pyrimidine nucleoside analogs ddC, dFdC, araC, BVDU and FdUrd with ATP as phosphate donor. Also displays broad nucleoside diphosphate kinase activity (By similarity). (447 aa) | ||||
Pnpt1 | Polyribonucleotide nucleotidyltransferase 1, mitochondrial; RNA-binding protein implicated in numerous RNA metabolic processes. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (By simi [...] (783 aa) | ||||
Polrmt | DNA-directed RNA polymerase, mitochondrial; DNA-dependent RNA polymerase catalyzes the transcription of mitochondrial DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA. In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand. (1207 aa) | ||||
Mcu | Calcium uniporter protein, mitochondrial; Mitochondrial inner membrane calcium uniporter that mediates calcium uptake into mitochondria. Constitutes the pore-forming and calcium-conducting subunit of the uniporter complex (uniplex) (By similarity). Activity is regulated by MICU1 and MICU2 (By similarity). At low Ca(2+) levels MCU activity is down-regulated by MICU1 and MICU2; at higher Ca(2+) levels MICU1 increases MCU activity (By similarity). Mitochondrial calcium homeostasis plays key roles in cellular physiology and regulates cell bioenergetics, cytoplasmic calcium signals and acti [...] (350 aa) | ||||
Ddit4 | DNA damage-inducible transcript 4 protein; Regulates cell growth, proliferation and survival via inhibition of the activity of the mammalian target of rapamycin complex 1 (mTORC1). Inhibition of mTORC1 is mediated by a pathway that involves DDIT4/REDD1, AKT1, the TSC1-TSC2 complex and the GTPase RHEB. Plays an important role in responses to cellular energy levels and cellular stress, including responses to hypoxia and DNA damage. Regulates p53/TP53-mediated apoptosis in response to DNA damage via its effect on mTORC1 activity. Its role in the response to hypoxia depends on the cell typ [...] (229 aa) | ||||
Hkdc1 | Hexokinase HKDC1; Catalyzes the phosphorylation of hexose to hexose 6- phosphate, although at very low level compared to other hexokinases (By similarity). Has low glucose phosphorylating activity compared to other hexokinases (By similarity). Involved in glucose homeostasis and hepatic lipid accumulation. Required to maintain whole-body glucose homeostasis during pregnancy; however additional evidences are required to confirm this role. (915 aa) | ||||
Slc2a4 | Solute carrier family 2, facilitated glucose transporter member 4; Insulin-regulated facilitative glucose transporter, which plays a key role in removal of glucose from circulation. Response to insulin is regulated by its intracellular localization: in the absence of insulin, it is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation, translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell ; Belongs to the major facilitator superfamily. Sugar transporte [...] (509 aa) | ||||
Ndufs2 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (463 aa) | ||||
Sdhb | Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). (282 aa) | ||||
Mthfd2 | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. (350 aa) | ||||
Eif2ak4 | eIF-2-alpha kinase GCN2; Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2- alpha/EIF2S1) on 'Ser-52' in response to low amino acid availability. Plays a role as an activator of the integrated stress response (ISR) required for adapatation to amino acid starvation. Converts phosphorylated eIF-2- alpha/EIF2S1 either to a competitive inhibitor of the translation initiation factor eIF-2B, leading to a global protein synthesis repression, and thus to a reduced overall utilization of amino acids, or to a transl [...] (1648 aa) | ||||
Gdf15 | Growth/differentiation factor 15; Regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses. Binds to its receptor, GFRAL, and activates GFRAL-expressing neurons localized in the area postrema and nucleus tractus solitarius of the brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which contitutes part of the 'emergency circuit' that shapes feeding responses to stressful conditions. On hepatocytes, inhibits growth hormone signaling. (303 aa) | ||||
Slc25a1 | Tricarboxylate transport protein, mitochondrial; Citrate transporter that mediates the exchange of mitochondrial citrate for cytosolic malate. Also able to mediate the exchange of citrate for isocitrate, phosphoenolpyruvate, cis- but not trans-aconitate and to a lesser extend maleate and succinate. Important for the bioenergetics of hepatic cells as it provides a carbon source for fatty acid and sterol biosyntheses, and NAD(+) for the glycolytic pathway. Required for proper neuromuscular junction formation. Belongs to the mitochondrial carrier (TC 2.A.29) family. (311 aa) | ||||
Stk11 | Serine/threonine-protein kinase STK11; Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP [...] (436 aa) | ||||
Cox16 | Cytochrome c oxidase assembly protein COX16 homolog, mitochondrial; Required for the assembly of the mitochondrial respiratory chain complex IV (CIV), also known as cytochrome c oxidase. Promotes the insertion of copper into the active site of cytochrome c oxidase subunit II (MT-CO2/COX2). Interacts specifically with newly synthesized MT-CO2/COX and its copper center-forming metallochaperones SCO1, SCO2 and COA6. Probably facilitates MT-CO2/COX2 association with the MITRAC assembly intermediate containing MT-CO1/COX1, thereby participating in merging the MT-CO1/COX1 and MT-CO2/COX2 ass [...] (106 aa) | ||||
Akt1 | RAC-alpha serine/threonine-protein kinase; AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the [...] (480 aa) | ||||
Hk2 | Hexokinase-2; Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D- fructose 6-phosphate, respectively) (By similarity). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (By similarity). Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis. (917 aa) | ||||
Sdhd | Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial; Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q); Belongs to the CybS family. (159 aa) | ||||
Fth1 | Ferritin heavy chain, N-terminally processed; Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney. (182 aa) |