node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Ank1 | Gapdh | ENSRNOP00000062056 | ENSRNOP00000040878 | Ankyrin 1, erythroid. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | 0.453 |
Ank1 | Trpa1 | ENSRNOP00000062056 | ENSRNOP00000009874 | Ankyrin 1, erythroid. | Transient receptor potential cation channel subfamily A member 1; Receptor-activated non-selective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function. Shows 8- fold preference for divalent over monovalent cations. Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of irritants, such as allylthiocyanate (AITC) found in mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an irritant from tears gas and veh [...] | 0.754 |
Ank1 | Trpv1 | ENSRNOP00000062056 | ENSRNOP00000026493 | Ankyrin 1, erythroid. | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.907 |
Gapdh | Ank1 | ENSRNOP00000040878 | ENSRNOP00000062056 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Ankyrin 1, erythroid. | 0.453 |
Gapdh | Pdgfra | ENSRNOP00000040878 | ENSRNOP00000003077 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Platelet-derived growth factor receptor alpha; Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the regulation of embryonic development, cell proliferation, survival and chemotaxis. Depending on the context, promotes or inhibits cell proliferation and cell migration. Plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells. Required for normal skeleton development and cephalic closure during embryonic development. Required for normal development of the mucosa lining the gastrointes [...] | 0.602 |
Gapdh | Trpa1 | ENSRNOP00000040878 | ENSRNOP00000009874 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Transient receptor potential cation channel subfamily A member 1; Receptor-activated non-selective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function. Shows 8- fold preference for divalent over monovalent cations. Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of irritants, such as allylthiocyanate (AITC) found in mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an irritant from tears gas and veh [...] | 0.425 |
Gapdh | Trpv1 | ENSRNOP00000040878 | ENSRNOP00000026493 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.579 |
Gapdh | Uchl1 | ENSRNOP00000040878 | ENSRNOP00000003248 | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] | Ubiquitin carboxyl-terminal hydrolase isozyme L1; Ubiquitin-protein hydrolase involved both in the processing of ubiquitin precursors and of ubiquitinated proteins (By similarity). This enzyme is a thiol protease that recognizes and hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin (By similarity). Also binds to free monoubiquitin and may prevent its degradation in lysosomes (By similarity). The homodimer may have ATP-independent ubiquitin ligase activity (By similarity). Belongs to the peptidase C12 family. | 0.492 |
Kcnk10 | Kcnk18 | ENSRNOP00000005175 | ENSRNOP00000039866 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | 0.726 |
Kcnk10 | Kcnk3 | ENSRNOP00000005175 | ENSRNOP00000013107 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. | 0.710 |
Kcnk10 | Kcnk5 | ENSRNOP00000005175 | ENSRNOP00000065715 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium two pore domain channel subfamily K member 5; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.647 |
Kcnk10 | Kcnk9 | ENSRNOP00000005175 | ENSRNOP00000012408 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.733 |
Kcnk10 | Trpa1 | ENSRNOP00000005175 | ENSRNOP00000009874 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Transient receptor potential cation channel subfamily A member 1; Receptor-activated non-selective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function. Shows 8- fold preference for divalent over monovalent cations. Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of irritants, such as allylthiocyanate (AITC) found in mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an irritant from tears gas and veh [...] | 0.511 |
Kcnk10 | Trpv1 | ENSRNOP00000005175 | ENSRNOP00000026493 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.561 |
Kcnk18 | Kcnk10 | ENSRNOP00000039866 | ENSRNOP00000005175 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | 0.726 |
Kcnk18 | Kcnk3 | ENSRNOP00000039866 | ENSRNOP00000013107 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. | 0.724 |
Kcnk18 | Kcnk5 | ENSRNOP00000039866 | ENSRNOP00000065715 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Potassium two pore domain channel subfamily K member 5; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.686 |
Kcnk18 | Kcnk9 | ENSRNOP00000039866 | ENSRNOP00000012408 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.722 |
Kcnk18 | Trpa1 | ENSRNOP00000039866 | ENSRNOP00000009874 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Transient receptor potential cation channel subfamily A member 1; Receptor-activated non-selective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function. Shows 8- fold preference for divalent over monovalent cations. Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of irritants, such as allylthiocyanate (AITC) found in mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an irritant from tears gas and veh [...] | 0.467 |
Kcnk18 | Trpv1 | ENSRNOP00000039866 | ENSRNOP00000026493 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.449 |