node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Il1b | Kdr | ENSRNOP00000006308 | ENSRNOP00000066886 | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. | Vascular endothelial growth factor receptor 2; Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular grow [...] | 0.604 |
Il1b | Scn9a | ENSRNOP00000006308 | ENSRNOP00000059170 | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. | Sodium channel protein type 9 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin- sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain. | 0.402 |
Il1b | Tac1 | ENSRNOP00000006308 | ENSRNOP00000009888 | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. | C-terminal-flanking peptide; Tachykinins are active peptides which excite neurons, evoke behavioral responses, are potent vasodilators and secretagogues, and contract (directly or indirectly) many smooth muscles; Belongs to the tachykinin family. | 0.698 |
Il1b | Th | ENSRNOP00000006308 | ENSRNOP00000027682 | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.711 |
Il1b | Trpv1 | ENSRNOP00000006308 | ENSRNOP00000026493 | Interleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.694 |
Kcnk1 | Kcnk10 | ENSRNOP00000070146 | ENSRNOP00000005175 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | 0.708 |
Kcnk1 | Kcnk12 | ENSRNOP00000070146 | ENSRNOP00000021570 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 12; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.634 |
Kcnk1 | Kcnk13 | ENSRNOP00000070146 | ENSRNOP00000067310 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution. | 0.636 |
Kcnk1 | Kcnk15 | ENSRNOP00000070146 | ENSRNOP00000014411 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 15; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel. | 0.658 |
Kcnk1 | Kcnk2 | ENSRNOP00000070146 | ENSRNOP00000003684 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.917 |
Kcnk1 | Kcnk3 | ENSRNOP00000070146 | ENSRNOP00000013107 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. | 0.680 |
Kcnk1 | Kcnk4 | ENSRNOP00000070146 | ENSRNOP00000028704 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | 0.649 |
Kcnk1 | Kcnk9 | ENSRNOP00000070146 | ENSRNOP00000012408 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.676 |
Kcnk1 | Trpv1 | ENSRNOP00000070146 | ENSRNOP00000026493 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] | 0.408 |
Kcnk10 | Kcnk1 | ENSRNOP00000005175 | ENSRNOP00000070146 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | 0.708 |
Kcnk10 | Kcnk12 | ENSRNOP00000005175 | ENSRNOP00000021570 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 12; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.693 |
Kcnk10 | Kcnk13 | ENSRNOP00000005175 | ENSRNOP00000067310 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution. | 0.675 |
Kcnk10 | Kcnk15 | ENSRNOP00000005175 | ENSRNOP00000014411 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 15; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel. | 0.650 |
Kcnk10 | Kcnk2 | ENSRNOP00000005175 | ENSRNOP00000003684 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.956 |
Kcnk10 | Kcnk3 | ENSRNOP00000005175 | ENSRNOP00000013107 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. | 0.710 |