node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Kcnk1 | Kcnk10 | ENSRNOP00000070146 | ENSRNOP00000005175 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | 0.708 |
Kcnk1 | Kcnk2 | ENSRNOP00000070146 | ENSRNOP00000003684 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.917 |
Kcnk1 | Kcnk4 | ENSRNOP00000070146 | ENSRNOP00000028704 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | 0.649 |
Kcnk1 | Kcnma1 | ENSRNOP00000070146 | ENSRNOP00000058962 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] | 0.582 |
Kcnk1 | Piezo1 | ENSRNOP00000070146 | ENSRNOP00000069995 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.417 |
Kcnk10 | Kcnk1 | ENSRNOP00000005175 | ENSRNOP00000070146 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | 0.708 |
Kcnk10 | Kcnk2 | ENSRNOP00000005175 | ENSRNOP00000003684 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.956 |
Kcnk10 | Kcnk4 | ENSRNOP00000005175 | ENSRNOP00000028704 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | 0.660 |
Kcnk10 | Kcnma1 | ENSRNOP00000005175 | ENSRNOP00000058962 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] | 0.500 |
Kcnk10 | Piezo1 | ENSRNOP00000005175 | ENSRNOP00000069995 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.662 |
Kcnk2 | Kcnk1 | ENSRNOP00000003684 | ENSRNOP00000070146 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | 0.917 |
Kcnk2 | Kcnk10 | ENSRNOP00000003684 | ENSRNOP00000005175 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | 0.956 |
Kcnk2 | Kcnk4 | ENSRNOP00000003684 | ENSRNOP00000028704 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | 0.684 |
Kcnk2 | Kcnma1 | ENSRNOP00000003684 | ENSRNOP00000058962 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] | 0.650 |
Kcnk2 | Piezo1 | ENSRNOP00000003684 | ENSRNOP00000069995 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.761 |
Kcnk4 | Kcnk1 | ENSRNOP00000028704 | ENSRNOP00000070146 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] | 0.649 |
Kcnk4 | Kcnk10 | ENSRNOP00000028704 | ENSRNOP00000005175 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. | 0.660 |
Kcnk4 | Kcnk2 | ENSRNOP00000028704 | ENSRNOP00000003684 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.684 |
Kcnk4 | Kcnma1 | ENSRNOP00000028704 | ENSRNOP00000058962 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] | 0.735 |
Kcnk4 | Piezo1 | ENSRNOP00000028704 | ENSRNOP00000069995 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.705 |