STRINGSTRING
Gnb2 Gnb2 Kcnj15 Kcnj15 Kcnk2 Kcnk2 Kcnk10 Kcnk10 Kcnv1 Kcnv1 Kcnc2 Kcnc2 Kcng3 Kcng3 Kcnj16 Kcnj16 Kcnj2 Kcnj2 Kcns3 Kcns3 Kcna4 Kcna4 Kcnj3 Kcnj3 Kcnmb1 Kcnmb1 Gngt2 Gngt2 Kcnk16 Kcnk16 Kcnh7 Kcnh7 Kcnj10 Kcnj10 Kcnh6 Kcnh6 Kcnab3 Kcnab3 Gabbr2 Gabbr2 Hcn2 Hcn2 Gnb5 Gnb5 Kcnd1 Kcnd1 Kcnk9 Kcnk9 Hcn4 Hcn4 Kcnk3 Kcnk3 Kcnh5 Kcnh5 Kcnh2 Kcnh2 Gngt1 Gngt1 Kcns2 Kcns2 Kcnv2 Kcnv2 Kcnj8 Kcnj8 Kcns1 Kcns1 Kcnq5 Kcnq5 Kcnd3 Kcnd3 Gng10 Gng10 Kcng4 Kcng4 Gng5 Gng5 Kcnh4 Kcnh4 Kcnn4 Kcnn4 Gng3 Gng3 Kcna5 Kcna5 Kcna1 Kcna1 Gng7 Gng7 Kcnc3 Kcnc3 Hcn3 Hcn3 Kcnq1 Kcnq1 LOC100909725 LOC100909725 Kcnn3 Kcnn3 Kcna7 Kcna7 Kcnk7 Kcnk7 Kcnj14 Kcnj14 Kcnj11 Kcnj11 Abcc8 Abcc8 Kcnk4 Kcnk4 Gng13 Gng13 Kcnf1 Kcnf1 Kcnk18 Kcnk18 Kcnn1 Kcnn1 Gnb1 Gnb1 Gabbr1 Gabbr1 Kcnj5 Kcnj5 Kcnb2 Kcnb2 Abcc9 Abcc9 Kcnj4 Kcnj4 Kcnj12 Kcnj12 Kcnmb3 Kcnmb3 Kcnma1 Kcnma1 Kcnj6 Kcnj6 Kcnn2 Kcnn2 Kcna10 Kcna10 Gng4 Gng4 LOC100912034 LOC100912034 Kcnb1 Kcnb1 Gng12 Gng12 Kcnk13 Kcnk13 Kcnh1 Kcnh1 Kcnc4 Kcnc4 Kcng1 Kcng1 Gnb3 Gnb3 Kcng2 Kcng2 Kcnk1 Kcnk1 Kcnj1 Kcnj1 Kcnh3 Kcnh3 Kcnj9 Kcnj9 Kcnmb2 Kcnmb2 Kcna6 Kcna6 Gng8 Gng8 Kcnab1 Kcnab1 Kcnab2 Kcnab2 Hcn1 Hcn1 Kcnh8 Kcnh8 Kcnc1 Kcnc1 Gnb4 Gnb4 Kcnmb4 Kcnmb4 Kcna3 Kcna3 Kcna2 Kcna2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Gnb2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
Kcnj15ATP-sensitive inward rectifier potassium channel 15; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium (By similarity); Belongs to the inward rectifier-type potassium channel (TC 1.A.2.1) family. KCNJ15 subfamily. (405 aa)
Kcnk2Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] (426 aa)
Kcnk10Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. (538 aa)
Kcnv1Potassium voltage-gated channel subfamily V member 1; Potassium channel subunit that does not form functional channels by itself. Modulates KCNB1 and KCNB2 channel activity by shifting the threshold for inactivation to more negative values and by slowing the rate of inactivation. Can down-regulate the channel activity of KCNB1, KCNB2, KCNC4 and KCND1, possibly by trapping them in intracellular membranes (By similarity). (503 aa)
Kcnc2Potassium voltage-gated channel subfamily C member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Contributes to the regulation of the fast action potential repolarization and in sustained high-frequency firing in neurons of the central nervous system. Homotetramer channels mediate delayed-rectifier voltage-dependent potassium currents that activate rapidly at high-threshold voltages and inactivate slowly. Forms tetrameric channels through which potassium ions pass in accordance with their electrochemic [...] (638 aa)
Kcng3Potassium voltage-gated channel subfamily G member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.3/KCNG3 sub-subfamily. (433 aa)
Kcnj16Inward rectifier potassium channel 16; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ16 may be involved in the regulation of fluid and pH balance (By similarity). In the kidney, together with KCNJ10, me [...] (419 aa)
Kcnj2Inward rectifier potassium channel 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be bl [...] (427 aa)
Kcns3Potassium voltage-gated channel subfamily S member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 (By similarity). Heterotetrameric channel activity formed with KCNB1 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells. Belongs to the potassium channel family. S (TC 1.A [...] (491 aa)
Kcna4Potassium voltage-gated channel subfamily A member 4; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (654 aa)
Kcnj3G protein-activated inward rectifier potassium channel 1; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulating t [...] (501 aa)
Kcnmb1Calcium-activated potassium channel subunit beta-1; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Increases the apparent Ca(2+)/voltage sensitivity of the KCNMA1 channel. It also modifies KCNMA1 channel kinetics and alters its pharmacological properties. It slows down the activation and the deactivation kinetics of the channel. Acts as a negative regulator of smooth muscle contraction by enhancing the calcium sensitivity to KCNMA1. Its prese [...] (191 aa)
Gngt2Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (69 aa)
Kcnk16Potassium two pore domain channel subfamily K member 16; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (292 aa)
Kcnh7Potassium voltage-gated channel subfamily H member 7; Pore-forming (alpha) subunit of voltage-gated potassium channel. Channel properties may be modulated by cAMP and subunit assembly. (1093 aa)
Kcnj10ATP-sensitive inward rectifier potassium channel 10; May be responsible for potassium buffering action of glial cells in the brain. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellu [...] (378 aa)
Kcnh6Potassium voltage-gated channel subfamily H member 6; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a slowly activating, rectifying current. Channel properties may be modulated by cAMP and subunit assembly. (950 aa)
Kcnab3Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.4 but not Kv1.1 or Kv1.5. (404 aa)
Gabbr2Gamma-aminobutyric acid type B receptor subunit 2; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (Ref.4,. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltag [...] (940 aa)
Hcn2Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). Can also transport ammonium in the distal nephron. Produces a large instantaneous current. (847 aa)
Gnb5Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors (By similarity). May play an important role in neuronal signaling, incl [...] (352 aa)
Kcnd1Potassium voltage-gated channel, Shal-related family, member 1; Belongs to the potassium channel family. (650 aa)
Kcnk9Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (396 aa)
Hcn4Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4; Hyperpolarization-activated ion channel with very slow activation and inactivation exhibiting weak selectivity for potassium over sodium ions. May contribute to the native pacemaker currents in heart (If) that regulate the rhythm of heart beat. May contribute to the native pacemaker currents in neurons (Ih) (By similarity). May mediate responses to sour stimuli. (985 aa)
Kcnk3Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. (411 aa)
Kcnh5Potassium voltage-gated channel subfamily H member 5; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a non-inactivating outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly. (988 aa)
Kcnh2Potassium voltage-gated channel subfamily H member 2; Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr) (By similarity). Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv11.1/KCNH2 sub-subfamily. (1163 aa)
Gngt1Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (74 aa)
Kcns2Potassium voltage-gated channel subfamily S member 2; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. (477 aa)
Kcnv2Potassium voltage-gated channel modifier subfamily V member 2; Belongs to the potassium channel family. (561 aa)
Kcnj8ATP-sensitive inward rectifier potassium channel 8; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium. Belongs to the inward [...] (424 aa)
Kcns1Potassium voltage-gated channel subfamily S member 1; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. (497 aa)
Kcnq5Potassium voltage-gated channel subfamily Q member 5. (821 aa)
Kcnd3Potassium voltage-gated channel subfamily D member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits. Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.3/KCND3 sub-subfamily. (655 aa)
Gng10Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
Kcng4Potassium voltage-gated channel, subfamily G, member 4 (Predicted); Belongs to the potassium channel family. (506 aa)
Gng5Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
Kcnh4Potassium voltage-gated channel subfamily H member 4; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits an outward current, but shows no inactivation. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv12.3/KCNH4 sub-subfamily. (1016 aa)
Kcnn4Intermediate conductance calcium-activated potassium channel protein 4; Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T- cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin; Belongs to the potassium channel KCNN family. KCa3.1/KCNN4 subfamily. (424 aa)
Gng3Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
Kcna5Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (602 aa)
Kcna1Potassium voltage-gated channel subfamily A member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney. Contributes to the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference acros [...] (495 aa)
Gng7Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Plays a role in the regulation of adenylyl cyclase signaling in certain regions of the brain. Plays a role in the formation or stabilzation of a G protein heterotrimer (G(olf) subunit alpha-beta-gamma-7) that is required for adenylyl cyclase activity in t [...] (69 aa)
Kcnc3Potassium voltage-gated channel subfamily C member 3; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. The channel displays rapid activation and inactivation kinetics. It plays a role in the regulation of the frequency, shape and duration of action potentials in Purkinje cells. Required for normal survival of cerebellar [...] (889 aa)
Hcn3Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3; Hyperpolarization-activated potassium channel. May also facilitate the permeation of sodium ions (By similarity). Belongs to the potassium channel HCN family. (780 aa)
Kcnq1Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic. During beta-adrenergic receptor stimulation participates in cardiac repolarization by [...] (669 aa)
LOC100909725Potassium channel subfamily K member. (313 aa)
Kcnn3Small conductance calcium-activated potassium channel protein 3; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin. (731 aa)
Kcna7Potassium voltage-gated channel, shaker-related subfamily, member 7 (Predicted); Belongs to the potassium channel family. (489 aa)
Kcnk7Potassium channel subfamily K member. (316 aa)
Kcnj14ATP-sensitive inward rectifier potassium channel 14; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ14 gives rise to low-conductance channels with a low affinity to the channel blockers Barium and Cesium. (434 aa)
Kcnj11ATP-sensitive inward rectifier potassium channel 11; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium. Can form cardiac and smo [...] (390 aa)
Abcc8ATP-binding cassette sub-family C member 8; Subunit of the beta-cell ATP-sensitive potassium channel (KATP). Regulator of ATP-sensitive K(+) channels and insulin release. Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1582 aa)
Kcnk4Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] (397 aa)
Gng13G protein subunit gamma 13. (67 aa)
Kcnf1Potassium voltage-gated channel modifier subfamily F member 1; Belongs to the potassium channel family. (505 aa)
Kcnk18Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] (405 aa)
Kcnn1Small conductance calcium-activated potassium channel protein 1; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin (By similarity); Belongs to the potassium channel KCNN family. KCa2.1/KCNN1 subfamily. (536 aa)
Gnb1Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
Gabbr1Gamma-aminobutyric acid type B receptor subunit 1; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage- depen [...] (984 aa)
Kcnj5G protein-activated inward rectifier potassium channel 4; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium. Belongs to the [...] (419 aa)
Kcnb2Potassium voltage-gated channel subfamily B member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric an [...] (720 aa)
Abcc9ATP-binding cassette sub-family C member 9; Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with KCNJ11. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation; Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1545 aa)
Kcnj4Inward rectifier potassium channel 4; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity); Belongs to the inward rectifier-type potassium channel [...] (446 aa)
Kcnj12ATP-sensitive inward rectifier potassium channel 12; Inward rectifying potassium channel that is activated by phosphatidylinositol 4,5-bisphosphate and that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potas [...] (427 aa)
Kcnmb3Calcium-activated potassium channel subunit beta-3; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Alters the functional properties of the current expressed by the KCNMA1 channel. May partially inactivate the current of KCNBMA. Two or more subunits of KCNMB3 are required to block the KCNMA1 tetramer (By similarity). Belongs to the KCNMB (TC 8.A.14.1) family. KCNMB3 subfamily. (239 aa)
Kcnma1Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] (1242 aa)
Kcnj6G protein-activated inward rectifier potassium channel 2; This potassium channel is controlled by G proteins. It may be involved in the regulation of insulin secretion by glucose and/or neurotransmitters. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blocka [...] (425 aa)
Kcnn2Small conductance calcium-activated potassium channel protein 2; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin. (583 aa)
Kcna10Potassium voltage-gated channel subfamily A member 10; Belongs to the potassium channel family. (511 aa)
Gng4Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
LOC100912034Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). (73 aa)
Kcnb1Potassium voltage-gated channel subfamily B member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Plays also a role in the regulation of exocytosis independently of its electrical function. Forms [...] (853 aa)
Gng12Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (72 aa)
Kcnk13Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution. (405 aa)
Kcnh1Potassium voltage-gated channel subfamily H member 1; Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel. Channel properties are modulated by subunit assembly. Mediates IK(NI) current in myoblasts. Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs) (By similarity). (962 aa)
Kcnc4Potassium voltage-gated channel subfamily C member 4; This protein mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient; Belongs to the potassium channel family. C (Shaw) (TC 1.A.1.2) subfamily. Kv3.4/KCNC4 sub-subfamily. (623 aa)
Kcng1Potassium voltage-gated channel subfamily G member 1; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.1/KCNG1 sub-subfamily. (514 aa)
Gnb3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
Kcng2Potassium voltage-gated channel subfamily G member 2; Potassium channel subunit. Modulates channel activity by shifting the threshold and the half-maximal activation to more negative values (By similarity). (480 aa)
Kcnk1Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] (336 aa)
Kcnj1ATP-sensitive inward rectifier potassium channel 1; In the kidney, probably plays a major role in potassium homeostasis. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This channel is activated by internal A [...] (391 aa)
Kcnh3Potassium voltage-gated channel subfamily H member 3; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits an outward current with fast inactivation. Channel properties may be modulated by cAMP and subunit assembly. (1087 aa)
Kcnj9G protein-activated inward rectifier potassium channel 3; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium (By similarity); Belongs to the inward rectifier-type potass [...] (411 aa)
Kcnmb2Calcium-activated potassium channel subunit beta-2; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Acts as a negative regulator that confers rapid and complete inactivation of KCNMA1 channel complex (By similarity); Belongs to the KCNMB (TC 8.A.14.1) family. KCNMB2 subfamily. (235 aa)
Kcna6Potassium voltage-gated channel subfamily A member 6; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KNCA5, KCNA6, and possibly other family members [...] (530 aa)
Gng8Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-8; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. This subunit may have a very specific role in the development and turnover of olfactory and vomeronasal neurons. (70 aa)
Kcnab1Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (Probable). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the closure o [...] (401 aa)
Kcnab2Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity. Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Modulates the functional properties of KCNA4. Modulates the functional properties of KCNA5 (B [...] (383 aa)
Hcn1Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). May mediate responses to sour stimuli. (902 aa)
Kcnh8Potassium voltage-gated channel subfamily H member 8; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a slowly activating, outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly. (1102 aa)
Kcnc1Potassium voltage-gated channel subfamily C member 1; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNC2, and possibly other family members as well. Contributes to fire sustained trains of very brief action [...] (585 aa)
Gnb4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (335 aa)
Kcnmb4Calcium-activated potassium channel subunit beta-4; Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Decreases the gating kinetics and calcium sensitivity of the KCNMA1 channel, but with fast deactivation kinetics. May decrease KCNMA1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. Makes KCNMA1 channel resistant to 100 nM charybdotoxin (CTX) toxin concentrations (By similarity). Belo [...] (210 aa)
Kcna3Potassium voltage-gated channel subfamily A member 3; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. (525 aa)
Kcna2Potassium voltage-gated channel subfamily A member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form funct [...] (499 aa)
Your Current Organism:
Rattus norvegicus
NCBI taxonomy Id: 10116
Other names: Buffalo rat, Norway rat, R. norvegicus, Rattus PC12 clone IS, Rattus sp. strain Wistar, Sprague-Dawley rat, Wistar rats, brown rat, laboratory rat, rat, rats, zitter rats
Server load: low (36%) [HD]