STRINGSTRING
Pln Pln Clic2 Clic2 Kcnk2 Kcnk2 Atp1b1 Atp1b1 Atp2b4 Atp2b4 Cacng4 Cacng4 Kcnk10 Kcnk10 Kcnj2 Kcnj2 Kcnip1 Kcnip1 Kcnk16 Kcnk16 Casq1 Casq1 Nppa Nppa Kcnd1 Kcnd1 Kcnk9 Kcnk9 Kcnk3 Kcnk3 Kcnh2 Kcnh2 Kcnk15 Kcnk15 Atp1b2 Atp1b2 Atp1b3 Atp1b3 Camk2d Camk2d Fxyd4 Fxyd4 Kcnd3 Kcnd3 Npr1 Npr1 Dmpk Dmpk Cacna2d2 Cacna2d2 Kcnk12 Kcnk12 Npr2 Npr2 Ces1d Ces1d Casq2 Casq2 Fxyd2 Fxyd2 Atp2a2 Atp2a2 Tnni3 Tnni3 Nppc Nppc Kcna5 Kcna5 Atp1a3 Atp1a3 Stim1 Stim1 Kcnq1 Kcnq1 LOC100909725 LOC100909725 Kcnk7 Kcnk7 Kcnj14 Kcnj14 Fxyd7 Fxyd7 Fxyd1 Fxyd1 Fxyd3 Fxyd3 Kcnj11 Kcnj11 Kcnk4 Kcnk4 Cacnb2 Cacnb2 Kcnk18 Kcnk18 Atp2b1 Atp2b1 Ryr3 Ryr3 Kcnip2 Kcnip2 Slc8a1 Slc8a1 Trdn Trdn Camk2a Camk2a Slc8a3 Slc8a3 Slc8a2 Slc8a2 Kcnip4 Kcnip4 Itpr1 Itpr1 Kcne3 Kcne3 Prkaca Prkaca Kcne2 Kcne2 Atp1a1 Atp1a1 Atp2b2 Atp2b2 Itpr2 Itpr2 Cacna1c Cacna1c Abcc9 Abcc9 Kcnj4 Kcnj4 Kcnj12 Kcnj12 Atp1a2 Atp1a2 Camk2b Camk2b Ryr2 Ryr2 Atp2a3 Atp2a3 Corin Corin Atp1a4 Atp1a4 Nos1 Nos1 Kcne4 Kcne4 Kcnk5 Kcnk5 Sri Sri Fkbp1b Fkbp1b Kcnk13 Kcnk13 Kcne5 Kcne5 Cacng7 Cacng7 Kcnk1 Kcnk1 Kcnip3 Kcnip3 Fxyd6 Fxyd6 Ahcyl1 Ahcyl1 Cacnb1 Cacnb1 Akap9 Akap9 Ryr1 Ryr1 Trpc1 Trpc1 Mme Mme Cacng6 Cacng6 Itpr3 Itpr3 Atp2b3 Atp2b3 Cacng8 Cacng8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PlnCardiac phospholamban; Reversibly inhibits the activity of ATP2A2 in cardiac sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates the contractility of the heart muscle in response to physiological stimuli via its effects on ATP2A2. Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in the heart muscle. The degree of ATP2A2 inhibition depends on the oligomeric state of PLN. ATP2A2 inhibition is alleviated by PLN phosphorylation (By similarity). (52 aa)
Clic2Chloride intracellular channel protein 2; Can insert into membranes and form chloride ion channels. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Modulates the activity of RYR2 and inhibits calcium influx (By similarity). (245 aa)
Kcnk2Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] (426 aa)
Atp1b1Sodium/potassium-transporting ATPase subunit beta-1; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane. (304 aa)
Atp2b4Plasma membrane calcium-transporting ATPase 4; Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (By similarity). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). (1203 aa)
Cacng4Voltage-dependent calcium channel gamma-4 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (By similarity). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs), including GRIA1 and GRIA4. Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (327 aa)
Kcnk10Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids. (538 aa)
Kcnj2Inward rectifier potassium channel 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be bl [...] (427 aa)
Kcnip1Kv channel-interacting protein 1; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Regulates channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. Modulates KCND2/Kv4.2 currents. In vitro, modulates KCND1/Kv4.1 currents (By similarity). Increases the presence of KCND2 at the cell surface. (236 aa)
Kcnk16Potassium two pore domain channel subfamily K member 16; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (292 aa)
Casq1Calsequestrin-1; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions. Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction (By similarity). Negatively regulates store-operated Ca(2+) entry (SOCE) activity (By similarity). (406 aa)
NppaAtrial natriuretic factor; Hormone playing a key role in cardiovascular homeostasis through regulation of natriuresis, diuresis, and vasodilation. Also plays a role in female pregnancy by promoting trophoblast invasion and spiral artery remodeling in uterus. Specifically binds and stimulates the cGMP production of the NPR1 receptor. Binds the clearance receptor NPR3 (By similarity). (152 aa)
Kcnd1Potassium voltage-gated channel, Shal-related family, member 1; Belongs to the potassium channel family. (650 aa)
Kcnk9Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (396 aa)
Kcnk3Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. (411 aa)
Kcnh2Potassium voltage-gated channel subfamily H member 2; Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr) (By similarity). Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv11.1/KCNH2 sub-subfamily. (1163 aa)
Kcnk15Potassium channel subfamily K member 15; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel. (318 aa)
Atp1b2Sodium/potassium-transporting ATPase subunit beta-2; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known. (290 aa)
Atp1b3Sodium/potassium-transporting ATPase subunit beta-3; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known; Belongs to the X(+)/potassium ATPases subunit beta family. (279 aa)
Camk2dCalcium/calmodulin-dependent protein kinase type II subunit delta; Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopath [...] (533 aa)
Fxyd4FXYD domain-containing ion transport regulator 4; Induces a potassium channel when expressed in Xenopus oocytes; Belongs to the FXYD family. (87 aa)
Kcnd3Potassium voltage-gated channel subfamily D member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits. Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.3/KCND3 sub-subfamily. (655 aa)
Npr1Atrial natriuretic peptide receptor 1; Receptor for the atrial natriuretic peptide NPPA/ANP and the brain natriuretic peptide NPPB/BNP which are potent vasoactive hormones playing a key role in cardiovascular homeostasis. Has guanylate cyclase activity upon binding of the ligand (By similarity). (1057 aa)
DmpkDM1 protein kinase. (626 aa)
Cacna2d2Voltage-dependent calcium channel subunit alpha-2/delta-2; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q- type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis (By similarity). (1157 aa)
Kcnk12Potassium channel subfamily K member 12; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (430 aa)
Npr2Atrial natriuretic peptide receptor 2; Receptor for the C-type natriuretic peptide NPPC/CNP hormone. Has guanylate cyclase activity upon binding of its ligand. May play a role in the regulation of skeletal growth. (1047 aa)
Ces1dCarboxylesterase 1D; Major lipase in white adipose tissue (By similarity). Involved in the metabolism of xenobiotics and of natural substrates. Hydrolyzes triacylglycerols and monoacylglycerols, with a preference for monoacylglycerols. The susceptibility of the substrate increases with decreasing acyl chain length of the fatty acid moiety. Catalyzes the synthesis of fatty acid ethyl esters; Belongs to the type-B carboxylesterase/lipase family. (564 aa)
Casq2Calsequestrin-2; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, especially at the interface between subunits. Can bind around 60 Ca(2+) ions. Regulates the release of lumenal Ca(2+) via the calcium release channel RYR2; this plays an important role in triggering muscle contraction. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats (By similarity). (427 aa)
Fxyd2Sodium/potassium-transporting ATPase subunit gamma; May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase. (66 aa)
Atp2a2Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform SERCA2A is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytos [...] (1043 aa)
Tnni3Troponin I, cardiac muscle; Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. (211 aa)
NppcC-type natriuretic peptide; Hormone which plays a role in endochondral ossification through regulation of cartilaginous growth plate chondrocytes proliferation and differentiation. May also be vasoactive and natriuretic. Specifically binds and stimulates the cGMP production of the NPR2 receptor. Binds the clearance receptor NPR3 (By similarity). (126 aa)
Kcna5Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (602 aa)
Atp1a3Sodium/potassium-transporting ATPase subunit alpha-3; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1013 aa)
Stim1Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores (By similarity). Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release-activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation (By similarity). Activated following interaction with STIMATE, leading to promote STIM1 conformational switch (By similarity). (685 aa)
Kcnq1Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic. During beta-adrenergic receptor stimulation participates in cardiac repolarization by [...] (669 aa)
LOC100909725Potassium channel subfamily K member. (313 aa)
Kcnk7Potassium channel subfamily K member. (316 aa)
Kcnj14ATP-sensitive inward rectifier potassium channel 14; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ14 gives rise to low-conductance channels with a low affinity to the channel blockers Barium and Cesium. (434 aa)
Fxyd7FXYD domain-containing ion transport regulator 7. (80 aa)
Fxyd1Phospholemman; Associates with and regulates the activity of the sodium/potassium-transporting ATPase (NKA) which transports Na(+) out of the cell and K(+) into the cell (By similarity). Inhibits NKA activity in its unphosphorylated state and stimulates activity when phosphorylated. Reduces glutathionylation of the NKA beta-1 subunit ATP1B1, thus reversing glutathionylation-mediated inhibition of ATP1B1 (By similarity). Contributes to female sexual development by maintaining the excitability of neurons which secrete gonadotropin-releasing hormone (By similarity). Belongs to the FXYD family. (95 aa)
Fxyd3FXYD domain-containing ion transport regulator 3; Associates with and regulates the activity of the sodium/potassium-transporting ATPase (NKA) which transports Na(+) out of the cell and K(+) into the cell. Reduces glutathionylation of the NKA beta-1 subunit ATP1B1, thus reversing glutathionylation-mediated inhibition of ATP1B1. Induces a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. Belongs to the FXYD family. (88 aa)
Kcnj11ATP-sensitive inward rectifier potassium channel 11; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium. Can form cardiac and smo [...] (390 aa)
Kcnk4Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane, and by raising the intracellular pH to basic levels. The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius. Plays a role in the perception of pain caused by heat (By similarity). Plays a role in the sensory perception of pain caused by pressure ( [...] (397 aa)
Cacnb2Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. (611 aa)
Kcnk18Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] (405 aa)
Atp2b1Plasma membrane calcium-transporting ATPase 1; Catalyzes the hydrolysis of ATP coupled with the transport of calcium from the cytoplasm to the extracellular space thereby maintaining intracellular calcium homeostasis. Plays a role in blood pressure regulation through regulation of intracellular calcium concentration and nitric oxide production leading to regulation of vascular smooth muscle cells vasoconstriction. Positively regulates bone mineralization through absorption of calcium from the intestine. Plays dual roles in osteoclast differentiation and survival by regulating RANKL-ind [...] (1176 aa)
Ryr3Ryanodine receptor 3. (4888 aa)
Kcnip2Kv channel-interacting protein 2; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Modulates channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. In vitro, modulates KCND2/Kv4.2 and KCND3/Kv4.3 currents. Involved in KCND2 and KCND3 trafficking to the cell surface. Essential for the expression of I(To) currents in the heart (By similarity). Required for normal protein levels of KCND2 in the heart ventricle (By similarity). Belongs to the recoverin family. (270 aa)
Slc8a1Sodium/calcium exchanger 1; Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to Ca(2+) transport during excitation- contraction coupling in muscle. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels r [...] (971 aa)
TrdnTriadin; Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact. Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. (688 aa)
Camk2aCalcium/calmodulin-dependent protein kinase type II subunit alpha; Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in synaptic plasticity, neurotransmitter release and long-term potentiation. Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission. Regulates dendritic spine development. Also regulates the migration of developing neurons. Phosphorylates the transcription factor FOXO3 t [...] (475 aa)
Slc8a3Sodium/calcium exchanger 3; Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels r [...] (927 aa)
Slc8a2Sodium/calcium exchanger 2; Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells. Contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory. Plays a role in regulating urinary Ca(2+) and Na(+) excretion. (919 aa)
Kcnip4Kv channel-interacting protein 4; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels, such as KCND2/Kv4.2 and KCND3/Kv4.3. Modulates channel expression at the cell membrane, gating characteristics, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. Belongs to the recoverin family. (230 aa)
Itpr1Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways. Belongs to the InsP3 receptor family. (2773 aa)
Kcne3Potassium voltage-gated channel subfamily E member 3; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNC4/Kv3.4 is proposed to form the subthreshold voltage-gated potassium channel in skeletal muscle and to establish the resting membrane potential (RMP) in muscle cells (By similarity). As [...] (107 aa)
PrkacacAMP-dependent protein kinase catalytic subunit alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the [...] (351 aa)
Kcne2Potassium voltage-gated channel subfamily E member 2; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNH2/HERG is proposed to form the rapidly activating component of the delayed rectifying potassium current in heart (IKr). May associate with KCNQ2 and/or KCNQ3 and modulate the native M-t [...] (123 aa)
Atp1a1Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1023 aa)
Atp2b2Plasma membrane calcium-transporting ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily. (1199 aa)
Itpr2Inositol 1,4,5-trisphosphate receptor type 2; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. This release is regulated by cAMP both dependently and independently of PKA (By similarity). (2058 aa)
Cacna1cVoltage-dependent L-type calcium channel subunit alpha-1C; Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (Probable). Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation- contraction coupling in the heart (By similarity). Required for normal heart development and normal regulation of heart rhythm (By similarity). Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essenti [...] (2006 aa)
Abcc9ATP-binding cassette sub-family C member 9; Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with KCNJ11. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation; Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1545 aa)
Kcnj4Inward rectifier potassium channel 4; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity); Belongs to the inward rectifier-type potassium channel [...] (446 aa)
Kcnj12ATP-sensitive inward rectifier potassium channel 12; Inward rectifying potassium channel that is activated by phosphatidylinositol 4,5-bisphosphate and that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potas [...] (427 aa)
Atp1a2Sodium/potassium-transporting ATPase subunit alpha-2; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1020 aa)
Camk2bCalcium/calmodulin-dependent protein kinase type II subunit beta; Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle. In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeti [...] (666 aa)
Ryr2Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development (By similarity); Belongs to t [...] (4938 aa)
Atp2a3Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. (1061 aa)
CorinAtrial natriuretic peptide-converting enzyme, activated protease fragment; Serine-type endopeptidase involved in atrial natriuretic peptide hormone (NPPA) processing. Converts through proteolytic cleavage the non-functional propeptide NPPA into the active hormone, thereby regulating blood pressure in heart and promoting natriuresis, diuresis and vasodilation. Proteolytic cleavage of pro-NPPA also plays a role in female pregnancy by promoting trophoblast invasion and spiral artery remodeling in uterus. Also acts as a regulator of sodium reabsorption in kidney. May also process pro-NPPB [...] (1111 aa)
Atp1a4Sodium/potassium-transporting ATPase subunit alpha-4; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility. (1028 aa)
Nos1Nitric oxide synthase, brain; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum; Belongs to the NOS family. (1463 aa)
Kcne4Potassium voltage-gated channel subfamily E regulatory subunit 4. (170 aa)
Kcnk5Potassium two pore domain channel subfamily K member 5; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (503 aa)
SriLOC683667 protein. (198 aa)
Fkbp1bPeptidyl-prolyl cis-trans isomerase FKBP1B; Has the potential to contribute to the immunosuppressive and toxic effects of FK506 and rapamycin. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the FKBP-type PPIase family. FKBP1 subfamily. (108 aa)
Kcnk13Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution. (405 aa)
Kcne5Potassium voltage-gated channel subfamily E regulatory subunit 5. (143 aa)
Cacng7Voltage-dependent calcium channel gamma-7 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (By similarity). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Shows specificity only for GRIA1 and GRIA2 (By similarity). Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (275 aa)
Kcnk1Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] (336 aa)
Kcnip3Calsenilin; Calcium-dependent transcriptional repressor that binds to the DRE element of genes including PDYN and FOS. Affinity for DNA is reduced upon binding to calcium and enhanced by binding to magnesium. Seems to be involved in nociception (By similarity). May play a role in the regulation of PSEN2 proteolytic processing and apoptosis. Together with PSEN2 involved in modulation of amyloid-beta formation (By similarity); Belongs to the recoverin family. (256 aa)
Fxyd6FXYD domain-containing ion transport regulator 6. (102 aa)
Ahcyl1S-adenosylhomocysteine hydrolase-like protein 1; Multifaceted cellular regulator which coordinates several essential cellular functions including regulation of epithelial HCO3(-) and fluid secretion, mRNA processing and DNA replication. Regulates ITPR1 sensitivity to inositol 1,4,5-trisphosphate competing for the common binding site and acting as endogenous 'pseudoligand' whose inhibitory activity can be modulated by its phosphorylation status. In the pancreatic and salivary ducts, at resting state, attenuates inositol 1,4,5-trisphosphate-induced calcium release by interacting with ITP [...] (483 aa)
Cacnb1Voltage-dependent L-type calcium channel subunit beta-1; Regulatory subunit of L-type calcium channels. Regulates the activity of L-type calcium channels that contain CACNA1A as pore- forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (Probable). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit. Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subun [...] (642 aa)
Akap9A-kinase-anchoring protein 9. (3847 aa)
Ryr1Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (By similarity). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. [...] (5012 aa)
Trpc1Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC1 sub-subfamily. (809 aa)
MmeNeprilysin; Thermolysin-like specificity, but is almost confined on acting on polypeptides of up to 30 amino acids. Biologically important in the destruction of opioid peptides such as Met- and Leu-enkephalins by cleavage of a Gly-Phe bond. Able to cleave angiotensin-1, angiotensin-2 and angiotensin 1-9. Displays UV-inducible elastase activity toward skin preelastic and elastic fibers (By similarity). Involved in the degradation of atrial natriuretic factor (ANF). (750 aa)
Cacng6Voltage-dependent calcium channel gamma-6 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. (260 aa)
Itpr3Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. (2670 aa)
Atp2b3Plasma membrane calcium-transporting ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily. (1258 aa)
Cacng8Voltage-dependent calcium channel gamma-8 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (By similarity). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium ch [...] (421 aa)
Your Current Organism:
Rattus norvegicus
NCBI taxonomy Id: 10116
Other names: Buffalo rat, Norway rat, R. norvegicus, Rattus PC12 clone IS, Rattus sp. strain Wistar, Sprague-Dawley rat, Wistar rats, brown rat, laboratory rat, rat, rats, zitter rats
Server load: low (22%) [HD]