STRINGSTRING
ASIC3 ASIC3 ASIC4 ASIC4 UMOD UMOD Gapdh Gapdh SYNPO SYNPO INS INS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ASIC3Acid sensing ion channel subunit 3; Belongs to the amiloride-sensitive sodium channel (TC 1.A.6) family. (532 aa)
ASIC4Acid sensing ion channel subunit family member 4; Belongs to the amiloride-sensitive sodium channel (TC 1.A.6) family. (539 aa)
UMODUromodulin. (644 aa)
GapdhGlyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubu [...] (353 aa)
SYNPOSynaptopodin. (937 aa)
INSInsulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa)
Your Current Organism:
Cavia porcellus
NCBI taxonomy Id: 10141
Other names: C. porcellus, Cavia aperea porcellus, Cavia cobaya, domestic guinea pig, guinea pig
Server load: low (26%) [HD]