STRINGSTRING
ndhA ndhA ndhI ndhI ndhG ndhG ndhE ndhE all0253 all0253 ndhD ndhD all0596 all0596 petC petC alr0751 alr0751 hoxF hoxF hoxU hoxU alr0851 alr0851 ndhF ndhF ndhD-2 ndhD-2 all0948 all0948 all0949 all0949 coxB coxB coxA coxA coxC coxC all1021 all1021 alr1320 alr1320 alr1410 alr1410 petC-2 petC-2 all1939 all1939 all1940 all1940 fdxB fdxB coxB-2 coxB-2 coxA-2 coxA-2 coxC-2 coxC-2 coxB-3 coxB-3 coxA-3 coxA-3 coxC-3 coxC-3 alr2743 alr2743 alr2744 alr2744 ndhH ndhH ndhJ ndhJ ndhK ndhK ndhC ndhC ndhF-2 ndhF-2 ndhD-3 ndhD-3 alr4030 alr4030 ndhF-3 ndhF-3 ndhD-4 ndhD-4 alr4158 alr4158 petC-4 petC-4 all4752 all4752 ndhB ndhB ndhD-5 ndhD-5 alr5125 alr5125 all5305 all5305
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ndhANADH dehydrogenase subunit 1; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (372 aa)
ndhINADH dehydrogenase subunit I; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (194 aa)
ndhGNADH dehydrogenase subunit 6; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 6 family. (202 aa)
ndhENADH dehydrogenase subunit 4L; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (101 aa)
all0253ORF_ID:all0253; similar to cytochrome b6. (212 aa)
ndhDNADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (538 aa)
all0596ORF_ID:all0596; unknown protein. (219 aa)
petCCytochrome b6/f-complex iron-sulfur protein; ORF_ID:all0606; petC gene product. (136 aa)
alr0751NADH dehydrogenase I chain E; ORF_ID:alr0751. (164 aa)
hoxFHydrogenase subunit; ORF_ID:alr0752; hoxF gene product. (544 aa)
hoxUHydrogenase chain U; ORF_ID:alr0762; hoxU gene product. (238 aa)
alr0851Lysophospholipase; ORF_ID:alr0851. (281 aa)
ndhFNADH dehydrogenase subunit 5; ORF_ID:alr0869. (618 aa)
ndhD-2NADH dehydrogenase subunit 4; ORF_ID:alr0870. (500 aa)
all0948Heme O synthase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (318 aa)
all0949ORF_ID:all0949; hypothetical protein. (333 aa)
coxBCytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (355 aa)
coxACytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (575 aa)
coxCCytochrome c oxidase subunit III; ORF_ID:alr0952. (207 aa)
all1021ORF_ID:all1021; probable proteinase. (945 aa)
alr1320ORF_ID:alr1320; hypothetical protein. (133 aa)
alr1410ORF_ID:alr1410; hypothetical protein. (188 aa)
petC-2Cytochrome b6/f-complex iron-sulfur protein; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. Belongs to the Rieske iron-sulfur protein family. (178 aa)
all1939Processing proteinase; ORF_ID:all1939. (512 aa)
all1940Protease; ORF_ID:all1940; Belongs to the peptidase M16 family. (528 aa)
fdxBFerredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (97 aa)
coxB-2Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (327 aa)
coxA-2Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (559 aa)
coxC-2Cytochrome c oxidase subunit III; ORF_ID:alr2516. (197 aa)
coxB-3Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (304 aa)
coxA-3Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (555 aa)
coxC-3Cytochrome c oxidase subunit III; ORF_ID:alr2734. (200 aa)
alr2743Processing protease; ORF_ID:alr2743; Belongs to the peptidase M16 family. (414 aa)
alr2744Processing protease; ORF_ID:alr2744. (427 aa)
ndhHNADH dehydrogenase subunit 7; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (394 aa)
ndhJNADH dehydrogenase chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (175 aa)
ndhKNADH dehydrogenase chain K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (245 aa)
ndhCNADH dehydrogenase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (120 aa)
ndhF-2NADH dehydrogenase subunit 5; ORF_ID:alr3956. (696 aa)
ndhD-3NADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (525 aa)
alr4030ORF_ID:alr4030; unknown protein. (290 aa)
ndhF-3NADH dehydrogenase subunit 5; ORF_ID:alr4156. (620 aa)
ndhD-4NADH dehydrogenase subunit 4; ORF_ID:alr4157. (500 aa)
alr4158ORF_ID:alr4158; hypothetical protein. (442 aa)
petC-4Cytochrome b6/f-complex iron-sulfur protein; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. Belongs to the Rieske iron-sulfur protein family. (178 aa)
all4752ORF_ID:all4752; hypothetical protein. (328 aa)
ndhBNADH dehydrogenase subunit 2; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (520 aa)
ndhD-5NADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (560 aa)
alr5125Processing protease; ORF_ID:alr5125; Belongs to the peptidase M16 family. (426 aa)
all5305ORF_ID:all5305; hypothetical protein. (291 aa)
Your Current Organism:
Nostoc sp. PCC7120
NCBI taxonomy Id: 103690
Other names: Anabaena sp. (ATCC 27893), Anabaena sp. (PCC 7120), Anabaena sp. DCC D0672, Anabaena sp. PCC 7120, Anabaena sp. SAG 25.82, Anabaena sp. UTEX B 2576, Anabaena variabilis UTCC 387, N. sp. PCC 7120, Nostoc muscorum ISU, Nostoc sp. AKM24, Nostoc sp. ATCC 27347, Nostoc sp. ATCC 72893, Nostoc sp. DSM 107007, Nostoc sp. Ind43, Nostoc sp. PCC 7120, Nostoc sp. SAG 25.82
Server load: low (30%) [HD]