STRINGSTRING
ndhK ndhK ndhD-3 ndhD-3 ndhD-4 ndhD-4 ndhD-5 ndhD-5 asr2953 asr2953 asl2914 asl2914 coxC-3 coxC-3 coxA-3 coxA-3 coxB-3 coxB-3 all0569 all0569 all0596 all0596 narB narB alr0751 alr0751 hoxF hoxF hoxU hoxU ndhD-2 ndhD-2 all0945 all0945 coxB coxB coxA coxA alr0975 alr0975 alr1410 alr1410 all1741 all1741 fdxB fdxB ndhI ndhI coxB-2 coxB-2 ndhE ndhE all0253 all0253 ndhD ndhD coxA-2 coxA-2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ndhKNADH dehydrogenase chain K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (245 aa)
ndhD-3NADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (525 aa)
ndhD-4NADH dehydrogenase subunit 4; ORF_ID:alr4157. (500 aa)
ndhD-5NADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I subunit 4 family. (560 aa)
asr29537, 8-dihydro-6-hydroxymethylpterin-pyrophosphokinase; ORF_ID:asr2953. (79 aa)
asl2914Ferredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (74 aa)
coxC-3Cytochrome c oxidase subunit III; ORF_ID:alr2734. (200 aa)
coxA-3Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (555 aa)
coxB-3Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (304 aa)
all0569ORF_ID:all0569; iron-sulfur cluster binding protein homolog. (134 aa)
all0596ORF_ID:all0596; unknown protein. (219 aa)
narBNitrate reductase; ORF_ID:alr0612; narB gene product; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. (746 aa)
alr0751NADH dehydrogenase I chain E; ORF_ID:alr0751. (164 aa)
hoxFHydrogenase subunit; ORF_ID:alr0752; hoxF gene product. (544 aa)
hoxUHydrogenase chain U; ORF_ID:alr0762; hoxU gene product. (238 aa)
ndhD-2NADH dehydrogenase subunit 4; ORF_ID:alr0870. (500 aa)
all0945Succinate dehydrogenase iron-sulfur protein subunit; ORF_ID:all0945; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (333 aa)
coxBCytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (355 aa)
coxACytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (575 aa)
alr0975ORF_ID:alr0975; similar to phytochelatin synthase. (242 aa)
alr1410ORF_ID:alr1410; hypothetical protein. (188 aa)
all1741ORF_ID:all1741; probable proteinase. (865 aa)
fdxBFerredoxin; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (97 aa)
ndhINADH dehydrogenase subunit I; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (194 aa)
coxB-2Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (327 aa)
ndhENADH dehydrogenase subunit 4L; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (101 aa)
all0253ORF_ID:all0253; similar to cytochrome b6. (212 aa)
ndhDNADH dehydrogenase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (538 aa)
coxA-2Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (559 aa)
Your Current Organism:
Nostoc sp. PCC7120
NCBI taxonomy Id: 103690
Other names: Anabaena sp. (ATCC 27893), Anabaena sp. (PCC 7120), Anabaena sp. DCC D0672, Anabaena sp. PCC 7120, Anabaena sp. SAG 25.82, Anabaena sp. UTEX B 2576, Anabaena variabilis UTCC 387, N. sp. PCC 7120, Nostoc muscorum ISU, Nostoc sp. AKM24, Nostoc sp. ATCC 27347, Nostoc sp. ATCC 72893, Nostoc sp. DSM 107007, Nostoc sp. Ind43, Nostoc sp. PCC 7120, Nostoc sp. SAG 25.82
Server load: low (32%) [HD]