node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
atp1 | atpF | gene:10492015 | gene:10492011 | ATP synthase subunit 1; A possible function for this protein is to guide the assembly of the membrane sector of the ATPase enzyme complex; Belongs to the bacterial AtpI family. | ATP synthase subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.980 |
atpF | atp1 | gene:10492011 | gene:10492015 | ATP synthase subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase subunit 1; A possible function for this protein is to guide the assembly of the membrane sector of the ATPase enzyme complex; Belongs to the bacterial AtpI family. | 0.980 |
atpF | ccmL | gene:10492011 | gene:10492879 | ATP synthase subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | 0.455 |
ccmK-2 | ccmL | gene:10492876 | gene:10492879 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0863; ccmK gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | 0.997 |
ccmK-2 | ccmM | gene:10492876 | gene:10492878 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0863; ccmK gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | 0.974 |
ccmL | atpF | gene:10492879 | gene:10492011 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | ATP synthase subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.455 |
ccmL | ccmK-2 | gene:10492879 | gene:10492876 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0863; ccmK gene product. | 0.997 |
ccmL | ccmM | gene:10492879 | gene:10492878 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | 0.981 |
ccmM | ccmK-2 | gene:10492878 | gene:10492876 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0863; ccmK gene product. | 0.974 |
ccmM | ccmL | gene:10492878 | gene:10492879 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0866; ccmL gene product. | 0.981 |
ccmM | gap1 | gene:10492878 | gene:10494597 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | 0.570 |
ccmM | gap2 | gene:10492878 | gene:10497120 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] | 0.567 |
ccmM | gap3 | gene:10492878 | gene:10493109 | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG; Belongs to the glyceraldehyde-3-phosphate dehydrogenase [...] | 0.603 |
gap1 | ccmM | gene:10494597 | gene:10492878 | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | 0.570 |
gap1 | gap2 | gene:10494597 | gene:10497120 | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] | 0.907 |
gap1 | gap3 | gene:10494597 | gene:10493109 | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG; Belongs to the glyceraldehyde-3-phosphate dehydrogenase [...] | 0.909 |
gap1 | zwf | gene:10494597 | gene:10496062 | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Glucose 6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. | 0.963 |
gap2 | ccmM | gene:10497120 | gene:10492878 | Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] | Carbon dioxide concentrating mechanism protein; ORF_ID:all0865; ccmM gene product. | 0.567 |
gap2 | gap1 | gene:10497120 | gene:10494597 | Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | 0.907 |
gap2 | gap3 | gene:10497120 | gene:10493109 | Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] | Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG; Belongs to the glyceraldehyde-3-phosphate dehydrogenase [...] | 0.907 |