STRINGSTRING
psbX psbX psbY psbY gap3 gap3 psaM psaM ntcA ntcA petN petN cytA cytA prk prk psaI psaI psbJ psbJ psbL psbL psbF psbF psbA psbA sodB sodB psbI psbI petG petG asl1922 asl1922 alr2350 alr2350 gap1 gap1 psaJ psaJ petJ-2 petJ-2 psbM psbM psbK psbK psbT psbT petJ petJ psbN psbN asl5128 asl5128 gap2 gap2 petM petM
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psbXPhotosystem II protein; Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II. (39 aa)
psbYPhotosystem II protein Y; Manganese-binding polypeptide with L-arginine metabolizing enzyme activity. Component of the core of photosystem II. Belongs to the PsbY family. (41 aa)
gap3Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG; Belongs to the glyceraldehyde-3-phosphate dehydrogenase [...] (337 aa)
psaMPhotosystem I PsaM subunit; ORF_ID:asr4657. (40 aa)
ntcANitrogen-responsive regulatory protein; Required for full expression of proteins subject to ammonium repression. Transcriptional activator of genes subject to nitrogen control. (223 aa)
petNPetN protein; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (29 aa)
cytACytochrome c6; Functions as an electron carrier between membrane-bound cytochrome b6-f and photosystem I in oxygenic photosynthesis. (111 aa)
prkPhosphoribulokinase; ORF_ID:alr4123. (334 aa)
psaIPhotosystem I protein PsaI precursor; May help in the organization of the PsaL subunit. Belongs to the PsaI family. (46 aa)
psbJPhotosystem II protein J; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (40 aa)
psbLPhotosystem II protein L; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (39 aa)
psbFCytochrome b559 beta subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (45 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (360 aa)
sodBIron superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (200 aa)
psbIPhotosystem II protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (38 aa)
petGCytochrome b6-f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (37 aa)
asl1922Cytochrome b6-f complex subunit 6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetL is important for photoautotrophic growth as well as for electron transfer efficiency and stability of the cytochrome b6-f complex. (31 aa)
alr2350Phosphoribulokinase; ORF_ID:alr2350. (313 aa)
gap1Glyceraldehyde-3-phosphate dehydrogenase; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (343 aa)
psaJPhotosystem I subunit IX; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (49 aa)
petJ-2Cytochrome c6; ORF_ID:asl0256. (35 aa)
psbMPhotosystem II protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (38 aa)
psbKPhotosystem II protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (45 aa)
psbTPhotosystem II PsbT protein; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family. (35 aa)
petJCytochrome c6; ORF_ID:all0161; Belongs to the cytochrome c family. PetJ subfamily. (111 aa)
psbNPhotosystem II protein; May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (43 aa)
asl5128Photosystem II reaction center protein Ycf12; A core subunit of photosystem II (PSII); Belongs to the Ycf12 family. (40 aa)
gap2Glyceraldehyde-3-phosphate dehydrogenase; Gap2 has a major role in carbon fixation as a component of the Calvin cycle. Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NADP. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NADP to NADPH. The reduced NADPH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic p [...] (337 aa)
petMCytochrome b6-f complex subunit; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (34 aa)
Your Current Organism:
Nostoc sp. PCC7120
NCBI taxonomy Id: 103690
Other names: Anabaena sp. (ATCC 27893), Anabaena sp. (PCC 7120), Anabaena sp. DCC D0672, Anabaena sp. PCC 7120, Anabaena sp. SAG 25.82, Anabaena sp. UTEX B 2576, Anabaena variabilis UTCC 387, N. sp. PCC 7120, Nostoc muscorum ISU, Nostoc sp. AKM24, Nostoc sp. ATCC 27347, Nostoc sp. ATCC 72893, Nostoc sp. DSM 107007, Nostoc sp. Ind43, Nostoc sp. PCC 7120, Nostoc sp. SAG 25.82
Server load: low (26%) [HD]