node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
apcA | apcA-2 | gene:10492025 | gene:10492459 | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers. | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers (By similarity). | 0.901 |
apcA | psaF | gene:10492025 | gene:10492113 | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers. | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | 0.447 |
apcA-2 | apcA | gene:10492459 | gene:10492025 | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers (By similarity). | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers. | 0.901 |
apcA-2 | psaF | gene:10492459 | gene:10492113 | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers (By similarity). | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | 0.439 |
psaE | psaF | gene:10496368 | gene:10492113 | Photosystem I protein E; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | 0.999 |
psaE | psbD | gene:10496368 | gene:10496339 | Photosystem I protein E; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | 0.659 |
psaF | apcA | gene:10492113 | gene:10492025 | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers. | 0.447 |
psaF | apcA-2 | gene:10492113 | gene:10492459 | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | Allophycocyanin alpha subunit; Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. Allophycocyanin has a maximum absorption at approximately 650 to 653 nanometers (By similarity). | 0.439 |
psaF | psaE | gene:10492113 | gene:10496368 | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | Photosystem I protein E; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. | 0.999 |
psaF | psbD | gene:10492113 | gene:10496339 | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | 0.783 |
psbD | psaE | gene:10496339 | gene:10496368 | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | Photosystem I protein E; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. | 0.659 |
psbD | psaF | gene:10496339 | gene:10492113 | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. | 0.783 |
psbD | recA | gene:10496339 | gene:10495310 | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | Recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.459 |
recA | psbD | gene:10495310 | gene:10496339 | Recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | Photosystem II protein D2; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. | 0.459 |