Your Input: | |||||
psaA | Photosystem I core protein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. (752 aa) | ||||
psaJ | Photosystem I subunit IX; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (49 aa) | ||||
psaF | Photosystem I subunit III precursor; Probably participates in efficiency of electron transfer from plastocyanin to P700 (or cytochrome c553 in algae and cyanobacteria). This plastocyanin-docking protein contributes to the specific association of plastocyanin to PSI; Belongs to the PsaF family. (164 aa) | ||||
psaD | Photosystem I reaction center subunit II; PsaD can form complexes with ferredoxin and ferredoxin- oxidoreductase in photosystem I (PS I) reaction center. (139 aa) | ||||
psbW | Photosystem II protein W; ORF_ID:all0801; Belongs to the Psb28 family. (111 aa) | ||||
psbZ | Photosystem II 11 kD protein; Plays a role in the repair and/or biogenesis of the calcium- manganese-oxide cluster on the lumenal face of the thylakoid membrane. Its presence in a photosystem II (PSII) preparation prevents binding of some small extrinsic subunits and thus assembly of calcium-manganese- oxide cluster. (133 aa) | ||||
psbI | Photosystem II protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (38 aa) | ||||
alr3415 | Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins (By similarity); Belongs to the OXA1/ALB3/YidC family. Type 1 subfamily. (380 aa) | ||||
psaC | Photosystem I iron-sulfur protein; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized accept [...] (81 aa) | ||||
hoxR | Rubredoxin; Rubredoxin is a small nonheme, iron protein lacking acid- labile sulfide. Its single Fe, chelated to 4 Cys, functions as an electron acceptor and may also stabilize the conformation of the molecule. Could be involved in hydrogenase-linked redox processes (By similarity). (111 aa) | ||||
psbE | Cytochrome b559 alpha-subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (82 aa) | ||||
psbF | Cytochrome b559 beta subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (45 aa) | ||||
psaI | Photosystem I protein PsaI precursor; May help in the organization of the PsaL subunit. Belongs to the PsaI family. (46 aa) | ||||
psbO | Manganese-stabilzing protein precursor; MSP binds to a putative Mn-binding protein and keeps 2 of the 4 Mn-atoms associated with PSII. (273 aa) | ||||
isiA | Photosystem II chlorophyll a-binding protein; Functions as an antenna for photosystem I (PSI) under iron- limiting conditions, when phycobilisomes disappear. In the (PSI)3(Isi3)18 complex most of the harvested energy is probably used by PSI; in other PSI-containing supercomplexes a large part of the energy will probably not be used for light harvesting, but rather is dissipated to protect the organism from light damage. Belongs to the PsbB/PsbC family. IsiA/Pcb subfamily. (344 aa) | ||||
psaE | Photosystem I protein E; Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. (70 aa) | ||||
asl4557 | Rubredoxin; ORF_ID:asl4557. (54 aa) | ||||
psaM | Photosystem I PsaM subunit; ORF_ID:asr4657. (40 aa) | ||||
psaK | Photosystem I subunit X; ORF_ID:asr4775. (86 aa) | ||||
psaB | Photosystem I core protein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6 (By similarity). (741 aa) | ||||
alr5290 | ORF_ID:alr5290; similar to photosystem I PsaK. (123 aa) | ||||
psaB-2 | Photosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6 (By similarity). (742 aa) |