STRINGSTRING
hisH hisH hisF hisF GYO_3552 GYO_3552 pncB pncB nadC nadC tgt tgt apt apt GYO_2584 GYO_2584 trpD trpD xpt xpt deoD deoD pyrE pyrE pyrR pyrR GYO_1885 GYO_1885 GYO_1606 GYO_1606 purF purF hpt hpt GYO_4467 GYO_4467 GYO_4347 GYO_4347 upp upp comFC comFC hisG hisG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hisHImidazole glycerol phosphate synthase, glutamine amidotransferase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (212 aa)
hisFImidazoleglycerol phosphate synthase, cyclase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (252 aa)
GYO_3552Glycosyl transferase family, helical bundle domain protein. (143 aa)
pncBPutative nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (490 aa)
nadCNicotinate-nucleotide pyrophosphorylase; Belongs to the NadC/ModD family. (270 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (381 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa)
GYO_2584Purine nucleoside phosphorylase I, inosine and guanosine-specific; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (271 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (338 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (194 aa)
deoDPurine nucleoside phosphorylase. (233 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (210 aa)
pyrRPyrR bifunctional protein; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa)
GYO_1885Conserved hypothetical protein; Belongs to the multicopper oxidase YfiH/RL5 family. (263 aa)
GYO_1606YkcB. (729 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (476 aa)
hptHypoxanthine phosphoribosyltransferase; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa)
GYO_4467YycA. (703 aa)
GYO_4347Pyrimidine-nucleoside phosphorylase. (433 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa)
comFCComF operon protein 3. (240 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (207 aa)
Your Current Organism:
Bacillus subtilis spizizenii
NCBI taxonomy Id: 1052585
Other names: B. subtilis subsp. spizizenii TU-B-10, Bacillus subtilis subsp. spizizenii TU-B-10, Bacillus subtilis subsp. spizizenii str. TU-B-10, Bacillus subtilis subsp. spizizenii strain TU-B-10
Server load: low (18%) [HD]