STRINGSTRING
AIL31940.1 AIL31940.1 AIL31971.1 AIL31971.1 AIL31973.1 AIL31973.1 AIL31974.1 AIL31974.1 argD argD AIL32027.1 AIL32027.1 leuA leuA AIL32049.1 AIL32049.1 aroB aroB aroK aroK hemA hemA ubiX ubiX metAA metAA pgi pgi AIL32078.1 AIL32078.1 AIL32082.1 AIL32082.1 gpmA gpmA AIL32101.1 AIL32101.1 lysA lysA AIL32117.1 AIL32117.1 argB argB ilvA ilvA ubiE ubiE AIL32144.1 AIL32144.1 AIL32146.1 AIL32146.1 trpB trpB trpA trpA accD accD hemE hemE mdh mdh AIL32206.1 AIL32206.1 AIL32207.1 AIL32207.1 AIL32208.1 AIL32208.1 sdhB sdhB gltA gltA ubiD ubiD sucA sucA AIL32244.1 AIL32244.1 AIL32245.1 AIL32245.1 AIL32256.1 AIL32256.1 purC purC purE purE purK purK AIL32262.1 AIL32262.1 AIL32265.1 AIL32265.1 ilvD ilvD argJ argJ hemL hemL aroE aroE aroQ aroQ AIL32298.1 AIL32298.1 AIL32299.1 AIL32299.1 AIL32301.1 AIL32301.1 metE metE AIL32332.1 AIL32332.1 AIL32334.1 AIL32334.1 tpiA tpiA argC argC glyA glyA AIL32376.1 AIL32376.1 adk adk purL purL guaB guaB AIL32454.1 AIL32454.1 AIL32455.1 AIL32455.1 trpC trpC trpD trpD AIL32460.1 AIL32460.1 trpE trpE AIL32462.1 AIL32462.1 AIL32463.1 AIL32463.1 coq7 coq7 AIL32468.1 AIL32468.1 ispE ispE prs prs ribB ribB ribH ribH AIL32494.1 AIL32494.1 purN purN AIL32501.1 AIL32501.1 AIL32511.1 AIL32511.1 gapA gapA AIL32528.1 AIL32528.1 dxs dxs proC proC AIL32551.1 AIL32551.1 gcvT gcvT gcvH gcvH gcvP gcvP AIL32578.1 AIL32578.1 cpsB cpsB aceE aceE AIL32619.1 AIL32619.1 purF purF AIL32633.1 AIL32633.1 AIL32634.1 AIL32634.1 dxr dxr hisZ hisZ hisC hisC ispG ispG ndk ndk AIL32671.1 AIL32671.1 AIL32673.1 AIL32673.1 fbp fbp AIL32681.1 AIL32681.1 AIL32698.1 AIL32698.1 metK metK dapF dapF AIL32742.1 AIL32742.1 purD purD AIL32757.1 AIL32757.1 hemC hemC sucD sucD sucC sucC AIL32768.1 AIL32768.1 AIL32771.1 AIL32771.1 argA argA rpiA rpiA AIL32792.1 AIL32792.1 AIL32793.1 AIL32793.1 ispH ispH surE surE plsY plsY argH argH accA accA AIL32863.1 AIL32863.1 trpF trpF asd asd leuB leuB leuD leuD leuC leuC aroC aroC pgk pgk aroA aroA AIL32916.1 AIL32916.1 AIL32917.1 AIL32917.1 serC serC ubiG ubiG dapA dapA AIL32962.1 AIL32962.1 gltX gltX fumC fumC miaA miaA AIL33001.1 AIL33001.1 AIL33019.1 AIL33019.1 AIL33054.1 AIL33054.1 dapB dapB AIL33070.1 AIL33070.1 purH purH AIL33122.1 AIL33122.1 AIL33123.1 AIL33123.1 eno eno glcB glcB AIL33130.1 AIL33130.1 AIL33131.1 AIL33131.1 gpsA gpsA AIL33143.1 AIL33143.1 psd psd AIL33155.1 AIL33155.1 thrB thrB ilvC ilvC AIL33165.1 AIL33165.1 AIL33166.1 AIL33166.1 ispD ispD ispF ispF AIL33209.1 AIL33209.1 AIL33225.1 AIL33225.1 acpP acpP fabG fabG AIL33250.1 AIL33250.1 plsX plsX AIL33260.1 AIL33260.1 AIL33261.1 AIL33261.1 fabG-2 fabG-2 AIL33306.1 AIL33306.1 AIL33312.1 AIL33312.1 hisE hisE hisI hisI hisF hisF hisA hisA hisH hisH hisB hisB hisD hisD hisG hisG gltD gltD AIL33333.1 AIL33333.1 AIL33352.1 AIL33352.1 ubiA ubiA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AIL31940.1Catalase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the catalase family. (480 aa)
AIL31971.1Ornithine cyclodeaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
AIL31973.1Shikimate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (276 aa)
AIL31974.1Arginase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the arginase family. (309 aa)
argDAcetylornithine aminotransferase; DapATase; functions in arginine biosynthetic pathway; catalyzes the formation of N-acetyl-L-glutamate 5-semialdehyde from 2-oxoglutarate and N(2)-acetyl-L-ornithine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (396 aa)
AIL32027.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (402 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (562 aa)
AIL32049.1Hypothetical protein; Recycling of diacylglycerol produced during the turnover of membrane phospholipid. (131 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (359 aa)
aroKHypothetical protein; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (178 aa)
hemAglutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde (GSA). (426 aa)
ubiX3-octaprenyl-4-hydroxybenzoate carboxy-lyase; Flavin prenyltransferase that catalyzes the synthesis of the prenylated FMN cofactor (prenyl-FMN) for 4-hydroxy-3-polyprenylbenzoic acid decarboxylase UbiD. The prenyltransferase is metal-independent and links a dimethylallyl moiety from dimethylallyl monophosphate (DMAP) to the flavin N5 and C6 atoms of FMN; Belongs to the UbiX/PAD1 family. (190 aa)
metAAHomoserine O-succinyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (298 aa)
pgiGlucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (523 aa)
AIL32078.1UTP--glucose-1-phosphate uridylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (279 aa)
AIL32082.1Hypothetical protein; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (183 aa)
gpmAPhosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (246 aa)
AIL32101.1Delta-aminolevulinic acid dehydratase; Catalyzes the formation of porphobilinogen from 5-aminolevulinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ALAD family. (335 aa)
lysADiaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. (425 aa)
AIL32117.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (295 aa)
ilvAThreonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (505 aa)
ubiEUbiquinone biosynthesis methyltransferase UbiE; Methyltransferase required for the conversion of demethylmenaquinol (DMKH2) to menaquinol (MKH2) and the conversion of 2-polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2). (246 aa)
AIL32144.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (214 aa)
AIL32146.1Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (497 aa)
trpBTryptophan synthase subunit alpha; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (398 aa)
trpATryptophan synthase alpha chain; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (278 aa)
accDacetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (289 aa)
hemEUroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III. (355 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family. (327 aa)
AIL32206.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (141 aa)
AIL32207.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (125 aa)
AIL32208.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (593 aa)
sdhBPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
gltAType II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (436 aa)
ubiD3-octaprenyl-4-hydroxybenzoate carboxy-lyase; Catalyzes the decarboxylation of 3-octaprenyl-4-hydroxy benzoate to 2-octaprenylphenol, an intermediate step in ubiquinone biosynthesis. (508 aa)
sucASucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology. (953 aa)
AIL32244.1Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (403 aa)
AIL32245.1E3 component of 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa)
AIL32256.1Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (354 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (292 aa)
purEN5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (161 aa)
purKPhosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (390 aa)
AIL32262.1FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)
AIL32265.1Octaprenyl diphosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FPP/GGPP synthase family. (321 aa)
ilvDDihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (620 aa)
argJOrnithine acetyltransferase; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. Belongs to the ArgJ family. (407 aa)
hemLGlutamate-1-semialdehyde aminotransferase; Converts (S)-4-amino-5-oxopentanoate to 5-aminolevulinate during the porphyrin biosynthesis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology. (426 aa)
aroEHypothetical protein; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (277 aa)
aroQ3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (143 aa)
AIL32298.1acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (153 aa)
AIL32299.1acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa)
AIL32301.1Proline dehydrogenase; Oxidizes proline to glutamate for use as a carbon and nitrogen source; In the C-terminal section; belongs to the aldehyde dehydrogenase family. (1198 aa)
metE5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (756 aa)
AIL32332.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa)
AIL32334.1Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (143 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (243 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (347 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (414 aa)
AIL32376.1Inositol phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (286 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (218 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1334 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa)
AIL32454.1Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (311 aa)
AIL32455.1Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa)
trpCIndole-3-glycerol-phosphate synthase; Involved in tryptophan biosynthesis; amino acid biosynthesis; converts 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate to C(1)-(3-indolyl)-glycerol 3-phosphate and carbon dioxide and water; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (261 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (339 aa)
AIL32460.1Anthranilate synthase component II; TrpG; with TrpE catalyzes the formation of anthranilate and glutamate from chorismate and glutamine; TrpG provides the glutamine amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (188 aa)
trpEAnthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] (506 aa)
AIL32462.1Hypothetical protein; Specifically catalyzes the dephosphorylation of 2- phosphoglycolate. Is involved in the dissimilation of the intracellular 2-phosphoglycolate formed during the DNA repair of 3'-phosphoglycolate ends, a major class of DNA lesions induced by oxidative stress. Belongs to the HAD-like hydrolase superfamily. CbbY/CbbZ/Gph/YieH family. (222 aa)
AIL32463.1Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (225 aa)
coq72-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Catalyzes the hydroxylation of 2-nonaprenyl-3-methyl-6- methoxy-1,4-benzoquinol during ubiquinone biosynthesis. (218 aa)
AIL32468.1Phosphoglucomutase; Catalyzes the interconversion of alpha-D-mannose 1-phosphate to alpha-D-mannose 6-phosphate and alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa)
ispEHypothetical protein; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. (295 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (312 aa)
ribB3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family. (374 aa)
ribH6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (172 aa)
AIL32494.1Riboflavin kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (320 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (215 aa)
AIL32501.1Serine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the iron-sulfur dependent L-serine dehydratase family. (478 aa)
AIL32511.1Transketolase; Catalyzes the formation of ribose 5-phosphate and xylulose 5-phosphate from sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate; can transfer ketol groups between several groups; in Escherichia coli there are two tkt genes, tktA expressed during exponential growth and the tktB during stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family. (672 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (336 aa)
AIL32528.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FPP/GGPP synthase family. (291 aa)
dxs1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (619 aa)
proCHypothetical protein; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (273 aa)
AIL32551.1Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (370 aa)
gcvTGlycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (357 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (124 aa)
gcvPGlycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (952 aa)
AIL32578.1Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. (492 aa)
cpsBMannose-1-phosphate guanyltransferase; Capsular polysaccharide colanic acid biosynthesis protein; catalyzes the formation of GDP-mannose from GTP and alpha-D-mannose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the mannose-6-phosphate isomerase type 2 family. (476 aa)
aceEPyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (894 aa)
AIL32619.1Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (485 aa)
AIL32633.1UDP diphosphate synthase; Catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic pyrophosphates generating different type of terpenoids. (249 aa)
AIL32634.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (294 aa)
dxr1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (392 aa)
hisZHypothetical protein; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (399 aa)
hisCHistidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (357 aa)
ispG4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family. (412 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (134 aa)
AIL32671.1Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (460 aa)
AIL32673.1Phospho-2-dehydro-3-deoxyheptonate aldolase; Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino- heptulosonate-7-phosphate (DAHP). (352 aa)
fbpFructose 1,6-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FBPase class 1 family. (329 aa)
AIL32681.1Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (790 aa)
AIL32698.1Hypothetical protein; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose; Belongs to the dTDP-4-dehydrorhamnose reductase family. (278 aa)
metKS-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (385 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (295 aa)
AIL32742.1Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (400 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (427 aa)
AIL32757.1Hypothetical protein; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III. (255 aa)
hemCPorphobilinogen deaminase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps. Belongs to the HMBS family. (308 aa)
sucDsuccinate--CoA ligase; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (294 aa)
sucCsuccinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (386 aa)
AIL32768.1Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (311 aa)
AIL32771.1Aspartate kinase; Catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and ATP, in Bacillus, lysine sensitive; regulated by response to starvation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (423 aa)
argAAmino acid acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (463 aa)
rpiARibose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (232 aa)
AIL32792.1Threonine synthase; Catalyzes the formation of L-threonine from O-phospho-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (473 aa)
AIL32793.1Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa)
ispH4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. (307 aa)
surEStationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (252 aa)
plsYHypothetical protein; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (209 aa)
argHArgininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (464 aa)
accAacetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa)
AIL32863.1Inositol monophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the inositol monophosphatase superfamily. (262 aa)
trpFHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (218 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (376 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (357 aa)
leuD3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (216 aa)
leuCIsopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (468 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (355 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (399 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate; Belongs to the cytidylate kinase family. Type 1 subfamily. (652 aa)
AIL32916.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (292 aa)
AIL32917.1Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (364 aa)
serCHypothetical protein; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa)
ubiG3-demethylubiquinone-9 3-methyltransferase; O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway; Belongs to the methyltransferase superfamily. UbiG/COQ3 family. (236 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (299 aa)
AIL32962.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (467 aa)
fumCFumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (462 aa)
miaAtRNA delta(2)-isopentenylpyrophosphate transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (312 aa)
AIL33001.1Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (242 aa)
AIL33019.1acetyl-CoA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (507 aa)
AIL33054.1enoyl-ACP reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)
dapB4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (268 aa)
AIL33070.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (528 aa)
AIL33122.1Riboflavin synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa)
AIL33123.1Hypothetical protein; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (385 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (432 aa)
glcBMalate synthase; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily. (722 aa)
AIL33130.1Isocitrate lyase; Catalyzes the first step in the glyoxalate cycle, which converts lipids to carbohydrates; Derived by automated computational analysis using gene prediction method: Protein Homology. (533 aa)
AIL33131.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (329 aa)
gpsAGlycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (327 aa)
AIL33143.1CDP-diacylglycerol--serine O-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (250 aa)
psdPhosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (216 aa)
AIL33155.1Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (418 aa)
thrBSerine kinase; Catalyzes the formation of O-phospho-L-homoserine from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pseudomonas-type ThrB family. (317 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (338 aa)
AIL33165.1Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa)
AIL33166.1Acetolactate synthase 3 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. (578 aa)
ispDHypothetical protein; Catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D- erythritol from CTP and 2-C-methyl-D-erythritol 4-phosphate (MEP). (229 aa)
ispF2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), two major building blocks of isoprenoid compounds. Catalyzes the conversion of 4-diphosphocytidyl-2- C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP). (161 aa)
AIL33209.1Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (861 aa)
AIL33225.12-aminoadipate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)
acpPAcyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (78 aa)
fabG3-ketoacyl-ACP reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (245 aa)
AIL33250.1ACP S-malonyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (310 aa)
plsXPhosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (354 aa)
AIL33260.1Acyl carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa)
AIL33261.1Acyl carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (84 aa)
fabG-23-ketoacyl-ACP reductase; Catalyzes the first of the two reduction steps in the elongation cycle of fatty acid synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa)
AIL33306.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (395 aa)
AIL33312.1Argininosuccinate synthase; Catalyzes the formation of arginosuccinate from citrulline and aspartate in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (446 aa)
hisEphosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (107 aa)
hisIphosphoribosyl-AMP cyclohydrolase; Catalyzes the hydrolysis of the adenine ring of phosphoribosyl-AMP. (130 aa)
hisFImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (256 aa)
hisACatalyzes the formation of 5-(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino-l- (5-phosphoribosyl)imidazole-4-carboxamide from 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (254 aa)
hisHImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (213 aa)
hisBImidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (436 aa)
hisGATP phosphoribosyltransferase catalytic subunit; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (220 aa)
gltDGlutamate synthase is composed of subunits alpha and beta; beta subunit is a flavin adenine dinucleotide-NADPH dependent oxidoreductase; provides electrons to the alpha subunit, which binds L-glutamine and 2-oxoglutarate and forms L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (488 aa)
AIL33333.1Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1560 aa)
AIL33352.1Coproporphyrinogen III oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the anaerobic coproporphyrinogen-III oxidase family. (454 aa)
ubiA4-hydroxybenzoate polyprenyltransferase; Catalyzes the prenylation of para-hydroxybenzoate (PHB) with an all-trans polyprenyl group. Mediates the second step in the final reaction sequence of ubiquinone-8 (UQ-8) biosynthesis, which is the condensation of the polyisoprenoid side chain with PHB, generating the first membrane-bound Q intermediate 3-octaprenyl-4-hydroxybenzoate. (312 aa)
Your Current Organism:
Basilea psittacipulmonis
NCBI taxonomy Id: 1072685
Other names: Alcaligenaceae bacterium CIP 110308, Alcaligenaceae bacterium DSM 24701, B. psittacipulmonis DSM 24701, Basilea psittacipulmonis CIP 110308, Basilea psittacipulmonis DSM 24701
Server load: low (28%) [HD]