Your Input: | |||||
atpB | ATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (252 aa) | ||||
atpE | ATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (87 aa) | ||||
atpF | ATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (170 aa) | ||||
atpFH | ATP synthase subunit b-delta; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0). This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction; Belongs to the ATPase delta chain family. (449 aa) | ||||
atpA | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (542 aa) | ||||
atpG | ATP synthase gamma chain AtpG; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (315 aa) | ||||
atpD | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (482 aa) | ||||
atpC | ATP synthase epsilon chain AtpC; Produces ATP from ADP in the presence of a proton gradient across the membrane. (126 aa) | ||||
ndk | Nucleoside diphosphate kinase Ndk; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (138 aa) | ||||
pyrH | Uridylate kinase PyrH; Catalyzes the reversible phosphorylation of UMP to UDP. (246 aa) | ||||
thyA | Thymidylate synthase ThyA; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (277 aa) | ||||
AFA73115.1 | Hypothetical protein. (338 aa) | ||||
thyX | Thymidylate synthase ThyX; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (250 aa) | ||||
AFA73236.1 | Hypothetical protein. (206 aa) | ||||
pyrG | CTP synthase PyrG; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (561 aa) | ||||
AFA74460.1 | Putative NUDIX hydrolase. (160 aa) | ||||
tmk | Thymidylate kinase Tmk; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (219 aa) | ||||
dcd | Deoxycytidine triphosphate deaminase Dcd; Bifunctional enzyme that catalyzes both the deamination of dCTP to dUTP and the hydrolysis of dUTP to dUMP without releasing the toxic dUTP intermediate. (191 aa) | ||||
AFA75701.1 | Hypothetical protein. (185 aa) |