STRINGSTRING
atpE atpE AFA74460.1 AFA74460.1 AFA73115.1 AFA73115.1 ndk ndk atpC atpC atpB atpB atpD atpD atpG atpG atpA atpA atpFH atpFH atpF atpF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpEATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (87 aa)
AFA74460.1Putative NUDIX hydrolase. (160 aa)
AFA73115.1Hypothetical protein. (338 aa)
ndkNucleoside diphosphate kinase Ndk; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (138 aa)
atpCATP synthase epsilon chain AtpC; Produces ATP from ADP in the presence of a proton gradient across the membrane. (126 aa)
atpBATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (252 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (482 aa)
atpGATP synthase gamma chain AtpG; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (315 aa)
atpAATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (542 aa)
atpFHATP synthase subunit b-delta; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0). This protein is part of the stalk that links CF(0) to CF(1). It either transmits conformational changes from CF(0) to CF(1) or is implicated in proton conduction; Belongs to the ATPase delta chain family. (449 aa)
atpFATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (170 aa)
Your Current Organism:
Gordonia polyisoprenivorans
NCBI taxonomy Id: 1112204
Other names: G. polyisoprenivorans VH2, Gordonia polyisoprenivorans VH2, Gordonia polyisoprenivorans str. VH2, Gordonia polyisoprenivorans strain VH2
Server load: low (32%) [HD]