STRINGSTRING
atpA atpA atpG atpG atpD atpD atpC atpC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpAATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (542 aa)
atpGATP synthase gamma chain AtpG; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (315 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (482 aa)
atpCATP synthase epsilon chain AtpC; Produces ATP from ADP in the presence of a proton gradient across the membrane. (126 aa)
Your Current Organism:
Gordonia polyisoprenivorans
NCBI taxonomy Id: 1112204
Other names: G. polyisoprenivorans VH2, Gordonia polyisoprenivorans VH2, Gordonia polyisoprenivorans str. VH2, Gordonia polyisoprenivorans strain VH2
Server load: low (24%) [HD]