node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SHL70614.1 | atpA | SAMN02746009_03236 | SAMN02746009_00160 | ATP synthase F1 subcomplex epsilon subunit. | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
SHL70614.1 | atpD | SAMN02746009_03236 | SAMN02746009_03237 | ATP synthase F1 subcomplex epsilon subunit. | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
SHL70614.1 | atpG | SAMN02746009_03236 | SAMN02746009_00159 | ATP synthase F1 subcomplex epsilon subunit. | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
SHL70614.1 | atpH | SAMN02746009_03236 | SAMN02746009_00161 | ATP synthase F1 subcomplex epsilon subunit. | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpA | SHL70614.1 | SAMN02746009_00160 | SAMN02746009_03236 | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F1 subcomplex epsilon subunit. | 0.999 |
atpA | atpD | SAMN02746009_00160 | SAMN02746009_03237 | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
atpA | atpG | SAMN02746009_00160 | SAMN02746009_00159 | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
atpA | atpH | SAMN02746009_00160 | SAMN02746009_00161 | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpD | SHL70614.1 | SAMN02746009_03237 | SAMN02746009_03236 | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | ATP synthase F1 subcomplex epsilon subunit. | 0.999 |
atpD | atpA | SAMN02746009_03237 | SAMN02746009_00160 | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
atpD | atpG | SAMN02746009_03237 | SAMN02746009_00159 | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
atpD | atpH | SAMN02746009_03237 | SAMN02746009_00161 | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpG | SHL70614.1 | SAMN02746009_00159 | SAMN02746009_03236 | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | ATP synthase F1 subcomplex epsilon subunit. | 0.999 |
atpG | atpA | SAMN02746009_00159 | SAMN02746009_00160 | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
atpG | atpD | SAMN02746009_00159 | SAMN02746009_03237 | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
atpG | atpH | SAMN02746009_00159 | SAMN02746009_00161 | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpH | SHL70614.1 | SAMN02746009_00161 | SAMN02746009_03236 | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase F1 subcomplex epsilon subunit. | 0.999 |
atpH | atpA | SAMN02746009_00161 | SAMN02746009_00160 | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
atpH | atpD | SAMN02746009_00161 | SAMN02746009_03237 | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
atpH | atpG | SAMN02746009_00161 | SAMN02746009_00159 | F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |