STRINGSTRING
AJ81_00210 AJ81_00210 guaB guaB gmk gmk AJ81_02095 AJ81_02095 purA purA AJ81_04165 AJ81_04165 udk udk apt apt guaA guaA AJ81_05815 AJ81_05815 surE surE AJ81_08295 AJ81_08295 AJ81_08625 AJ81_08625 AJ81_09890 AJ81_09890 upp upp AJ81_10250 AJ81_10250
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AJ81_00210ATPase AAA; Derived by automated computational analysis using gene prediction method: Protein Homology. (557 aa)
guaBInosine 5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa)
AJ81_02095Pyrimidine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (400 aa)
AJ81_04165Xanthosine triphosphate pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (194 aa)
udkUridine/cytidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (205 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa)
guaAGMP synthase; Catalyzes the synthesis of GMP from XMP. (504 aa)
AJ81_05815Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (172 aa)
surEStationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (270 aa)
AJ81_08295Metallophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (515 aa)
AJ81_08625Purine phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (249 aa)
AJ81_09890Cytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (128 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (207 aa)
AJ81_10250Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (272 aa)
Your Current Organism:
Pseudothermotoga hypogea
NCBI taxonomy Id: 1123384
Other names: P. hypogea DSM 11164 = NBRC 106472, Pseudothermotoga hypogea DSM 11164, Pseudothermotoga hypogea DSM 11164 = NBRC 106472, Pseudothermotoga hypogea NBRC 106472, Pseudothermotoga hypogea NBRC 106472 = DSM 11164, Thermotoga hypogea DSM 11164, Thermotoga hypogea DSM 11164 = NBRC 106472, Thermotoga hypogea NBRC 106472
Server load: low (18%) [HD]