STRINGSTRING
rpl23 rpl23 ndhG ndhG ndhB ndhB psbH psbH psbJ psbJ psbM psbM ndhA-2 ndhA-2 ndhD ndhD petD petD psbB psbB psbF psbF atpH atpH rpoB rpoB psbA psbA ndhH-2 ndhH-2 rpl23-2 rpl23-2 psbE psbE ycf3 ycf3 ndhF ndhF ycf15 ycf15 psbN psbN atpA atpA rpoC2 rpoC2 ccsA ccsA petB petB psaJ psaJ psbL psbL ndhK ndhK psbI psbI matK matK ndhA ndhA ndhH ndhH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpl2350S ribosomal protein L23, chloroplastic; Binds to 23S rRNA. (93 aa)
ndhGNAD(P)H-quinone oxidoreductase subunit 6, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (176 aa)
ndhBNAD(P)H-quinone oxidoreductase subunit 2, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (510 aa)
psbHPhotosystem II reaction center protein H; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (73 aa)
psbJPhotosystem II reaction center protein J; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (40 aa)
psbMPhotosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa)
ndhA-2NADH-plastoquinone oxidoreductase subunit 1. (163 aa)
ndhDNAD(P)H-quinone oxidoreductase chain 4, chloroplastic. (500 aa)
petDCytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (174 aa)
psbBPhotosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (508 aa)
psbFCytochrome b559 subunit beta; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (39 aa)
atpHATP synthase subunit c, chloroplastic; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1076 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
ndhH-2NADH-plastoquinone oxidoreductase subunit 7; Belongs to the complex I 49 kDa subunit family. (370 aa)
rpl23-250S ribosomal protein L23, chloroplastic; Binds to 23S rRNA. (117 aa)
psbECytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (83 aa)
ycf3Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits. (172 aa)
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (739 aa)
ycf15Hypothetical chloroplast RF15. (132 aa)
psbNProtein PsbN; May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (43 aa)
atpAATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (504 aa)
rpoC2DNA-directed RNA polymerase subunit beta'; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1477 aa)
ccsACytochrome c biogenesis protein CcsA; Required during biogenesis of c-type cytochromes (cytochrome c6 and cytochrome f) at the step of heme attachment. (322 aa)
petBCytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (232 aa)
psaJPhotosystem I reaction center subunit IX; May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (42 aa)
psbLPhotosystem II reaction center protein L; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (38 aa)
ndhKNAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (245 aa)
psbIPhotosystem II reaction center protein I; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (36 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (511 aa)
ndhANAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (362 aa)
ndhHNAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (393 aa)
Your Current Organism:
Hordeum vulgare
NCBI taxonomy Id: 112509
Other names: H. vulgare subsp. vulgare, Hordeum sativum, Hordeum sativum Jess., Hordeum vulgare subsp. vulgare, Hordeum vulgare var. nudum, Hordeum vulgare var. nudum Spenn., Hordeum vulgare var. vulgare, domesticated barley, two-rowed barley
Server load: low (16%) [HD]