STRINGSTRING
A0A1L9V9N4 A0A1L9V9N4 A0A1L9VAT2 A0A1L9VAT2 A0A1L9VCP4 A0A1L9VCP4 A0A1L9VDQ0 A0A1L9VDQ0 A0A1L9VKP3 A0A1L9VKP3 A0A1L9VPK6 A0A1L9VPK6 A0A1L9VT84 A0A1L9VT84 A0A1L9VTE0 A0A1L9VTE0 A0A1L9VZ42 A0A1L9VZ42
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
A0A1L9V9N4Cytochrome c domain-containing protein; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. (96 aa)
A0A1L9VAT2NADH-ubiquinone oxidoreductase; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (159 aa)
A0A1L9VCP4Cytochrome b-c1 complex subunit Rieske, mitochondrial; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (234 aa)
A0A1L9VDQ0NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (186 aa)
A0A1L9VKP3Cytochrome b-c1 complex subunit Rieske, mitochondrial; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (228 aa)
A0A1L9VPK6Alternative oxidase. (353 aa)
A0A1L9VT84Cytochrome b-c1 complex subunit 7; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain; Belongs to the UQCRB/QCR7 family. (122 aa)
A0A1L9VTE0NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (136 aa)
A0A1L9VZ42NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. (497 aa)
Your Current Organism:
Aspergillus glaucus
NCBI taxonomy Id: 1160497
Other names: A. glaucus CBS 516.65, Aspergillus glaucus CBS 516.65
Server load: medium (52%) [HD]