STRINGSTRING
glnD glnD SU9_06360 SU9_06360 SU9_06365 SU9_06365 SU9_22455 SU9_22455 glnE glnE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
glnDPII uridylyl-transferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism. (836 aa)
SU9_06360COG0347 Nitrogen regulatory protein PII. (112 aa)
SU9_06365Ammonium transporter; COG0004 Ammonia permease. (442 aa)
SU9_22455COG0174 Glutamine synthetase. (453 aa)
glnEBifunctional glutamine-synthetase adenylyltransferase/deadenyltransferase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of [...] (1008 aa)
Your Current Organism:
Streptomyces auratus
NCBI taxonomy Id: 1160718
Other names: S. auratus AGR0001, Streptomyces auratus AGR0001, Streptomyces auratus str. AGR0001, Streptomyces auratus strain AGR0001
Server load: low (30%) [HD]