STRINGSTRING
glyQ glyQ UU9_17023 UU9_17023 fusA-2 fusA-2 rpsG rpsG rpsL rpsL rplL rplL rplJ rplJ rplA rplA rplK rplK pth pth rplY rplY prfA prfA UU9_16641 UU9_16641 def-2 def-2 leuS leuS gltX gltX lepA lepA metG metG tyrS tyrS argS argS rpmH rpmH UU9_13788 UU9_13788 def def fmt fmt alaS alaS UU9_13127 UU9_13127 UU9_13092 UU9_13092 rplQ rplQ rpsD rpsD rpsK rpsK rpsM rpsM rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN rpsN rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ UU9_12678 UU9_12678 UU9_12263 UU9_12263 asnC asnC rpsF rpsF rpsR rpsR rplI rplI UU9_11460 UU9_11460 cysS cysS smpB smpB UU9_11255 UU9_11255 infA infA rpsO rpsO infB infB rpmF rpmF hisS hisS ileS ileS rpsT rpsT rpmA rpmA rplU rplU UU9_10137 UU9_10137 rpsU rpsU glyS glyS rpmG rpmG rpmB rpmB UU9_08380 UU9_08380 rplM rplM rpsI rpsI rpmE2 rpmE2 rimK rimK UU9_06399 UU9_06399 lysS lysS prfB prfB UU9_05384 UU9_05384 rpsA rpsA rpmJ rpmJ fusA fusA prfC prfC UU9_04899 UU9_04899 UU9_04539 UU9_04539 UU9_04152 UU9_04152 trpS trpS thrS thrS infC infC rpmI rpmI rplT rplT pheS pheS pheT pheT aspS aspS glnS glnS rpsP rpsP rplS rplS efp efp proS proS valS valS frr frr tsf tsf rpsB rpsB UU9_01039 UU9_01039 UU9_01009 UU9_01009 gluQ gluQ serS serS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
glyQCOG0752 Glycyl-tRNA synthetase, alpha subunit. (303 aa)
UU9_17023COG0050 GTPases - translation elongation factors. (396 aa)
fusA-2Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (709 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (155 aa)
rpsL30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (124 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (177 aa)
rplA50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (235 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (191 aa)
rplY50S ribosomal protein L25/general stress protein Ctc; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (227 aa)
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (359 aa)
UU9_16641Putative ABC transporter ATP-binding protein; COG0488 ATPase components of ABC transporters with duplicated ATPase domains. (554 aa)
def-2Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (178 aa)
leuSCOG0495 Leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (981 aa)
gltXglutamyl-tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (466 aa)
lepAGTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (597 aa)
metGmethionyl-tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (700 aa)
tyrStyrosyl-tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (403 aa)
argSCOG0018 Arginyl-tRNA synthetase. (561 aa)
rpmHCOG0230 Ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (44 aa)
UU9_13788COG0189 Glutathione synthase/Ribosomal protein S6 modification enzyme (glutaminyl transferase). (494 aa)
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (169 aa)
fmtmethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (308 aa)
alaSalanyl-tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (875 aa)
UU9_13127RNA-binding protein. (75 aa)
UU9_13092GTP-binding protein TypA/BipA; COG1217 Predicted membrane GTPase involved in stress response. (608 aa)
rplQCOG0203 Ribosomal protein L17. (127 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (208 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (128 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (143 aa)
rpmDCOG1841 Ribosomal protein L30/L7E. (55 aa)
rpsE30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (169 aa)
rplR50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (117 aa)
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (175 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa)
rpsN30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rplE50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rplX50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (104 aa)
rplN50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (93 aa)
rpmCCOG0255 Ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (61 aa)
rplP50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (250 aa)
rplV50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (111 aa)
rpsS30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (90 aa)
rplB50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rplW50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (97 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (200 aa)
rplC50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (213 aa)
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
UU9_12678Hypothetical protein; COG0299 Folate-dependent phosphoribosylglycinamide formyltransferase PurN. (256 aa)
UU9_12263Putative bacteriophage protein. (227 aa)
asnCCOG0017 Aspartyl/asparaginyl-tRNA synthetases. (471 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (141 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (76 aa)
rplICOG0359 Ribosomal protein L9. (49 aa)
UU9_11460COG0231 Translation elongation factor P (EF-P)/translation initiation factor 5A (eIF-5A). (187 aa)
cysSCOG0215 Cysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (454 aa)
smpBSsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (162 aa)
UU9_11255lysyl-tRNA synthetase; COG2269 Truncated, possibly inactive, lysyl-tRNA synthetase (class II). (291 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
rpsO30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (937 aa)
rpmFCOG0333 Ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (64 aa)
hisSCOG0124 Histidyl-tRNA synthetase. (457 aa)
ileSisoleucyl-tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (965 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
rpmACOG0211 Ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
rplU50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (104 aa)
UU9_10137Pyridine nucleotide-disulfide oxidoreductase; COG2081 Predicted flavoproteins. (416 aa)
rpsUCOG0828 Ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
glySCOG0751 Glycyl-tRNA synthetase, beta subunit. (712 aa)
rpmGCOG0267 Ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (55 aa)
rpmBCOG0227 Ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
UU9_08380COG1186 Protein chain release factor B. (140 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsICOG0103 Ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (130 aa)
rpmE2COG0254 Ribosomal protein L31. (84 aa)
rimKCOG0189 Glutathione synthase/Ribosomal protein S6 modification enzyme (glutaminyl transferase); Belongs to the RimK family. (292 aa)
UU9_06399Hypothetical protein. (379 aa)
lysSCOG1190 Lysyl-tRNA synthetase (class II); Belongs to the class-II aminoacyl-tRNA synthetase family. (515 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (329 aa)
UU9_05384tRNA-binding protein; COG0073 EMAP domain. (122 aa)
rpsA30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (557 aa)
rpmJCOG0257 Ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (41 aa)
fusATranslation elongation factor EF-G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF- [...] (709 aa)
prfCPeptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (533 aa)
UU9_04899Amidase; COG0154 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases. (465 aa)
UU9_04539Small GTP-binding protein; COG0480 Translation elongation factors (GTPases). (679 aa)
UU9_04152COG0223 Methionyl-tRNA formyltransferase. (262 aa)
trpStryptophanyl-tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (453 aa)
thrSthreonyl-tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (633 aa)
infCTranslation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (158 aa)
rpmICOG0291 Ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (64 aa)
rplT50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (119 aa)
pheSCOG0016 Phenylalanyl-tRNA synthetase alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (331 aa)
pheTphenylalanyl-tRNA ligase subunit beta; COG0073 EMAP domain; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (792 aa)
aspSaspartyl-tRNA ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (584 aa)
glnSCOG0008 Glutamyl- and glutaminyl-tRNA synthetases. (583 aa)
rpsPCOG0228 Ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (85 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (135 aa)
efpElongation factor P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-34 is required for alleviation; Belongs to the elongation factor P family. (192 aa)
proSprolyl-tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacyla [...] (565 aa)
valSvalyl-tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (963 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa)
tsfElongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (293 aa)
rpsBCOG0052 Ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (282 aa)
UU9_01039COG2081 Predicted flavoproteins. (397 aa)
UU9_01009Hypothetical protein. (142 aa)
gluQGlutamyl-queuosine tRNA(Asp) synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (291 aa)
serSseryl-tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (426 aa)
Your Current Organism:
Rhodanobacter fulvus
NCBI taxonomy Id: 1163408
Other names: R. fulvus Jip2, Rhodanobacter fulvus Jip2, Rhodanobacter fulvus NBRC 103168, Rhodanobacter fulvus str. Jip2, Rhodanobacter fulvus strain Jip2
Server load: low (20%) [HD]