STRINGSTRING
EKF00710.1 EKF00710.1 EKF00356.1 EKF00356.1 EKF00357.1 EKF00357.1 ndhB ndhB EKF00149.1 EKF00149.1 ndhE ndhE ndhH ndhH EKF01168.1 EKF01168.1 ndhK ndhK ndhJ ndhJ ndhO ndhO EKF02864.1 EKF02864.1 EKF03486.1 EKF03486.1 EKF03598.1 EKF03598.1 ndhM ndhM ndhA ndhA ndhI ndhI EKE99675.1 EKE99675.1 EKF05888.1 EKF05888.1 EKF05885.1 EKF05885.1 ndhD-2 ndhD-2 ndhC ndhC EKF05651.1 EKF05651.1 ndhN ndhN EKF03810.1 EKF03810.1 EKF03728.1 EKF03728.1 ndhD ndhD ndhD-3 ndhD-3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
EKF00710.1Hypothetical protein; KEGG: ava:Ava_2796 1.5e-61 NAD(P)H-quinone oxidoreductase subunit 4 K05575. (146 aa)
EKF00356.1NAD(P)H-quinone oxidoreductase subunit F; KEGG: npu:Npun_R4290 2.9e-287 NdhF3 family NAD(P)H dehydrogenase K05577; Psort location: CytoplasmicMembrane, score: 10.00. (618 aa)
EKF00357.1NAD(P)H-quinone oxidoreductase subunit D4; KEGG: npu:Npun_R4289 6.0e-225 proton-translocating NADH-quinone oxidoreductase, chain M K05575; Psort location: CytoplasmicMembrane, score: 10.00. (499 aa)
ndhBProton-translocating NADH-quinone oxidoreductase, chain; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (520 aa)
EKF00149.1Copper amine oxidase, N3 domain protein; KEGG: ava:Ava_3451 4.4e-277 tynA; tyramine oxidase K00276; Psort location: Cytoplasmic, score: 9.26. (659 aa)
ndhENADH dehydrogenase subunit K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (101 aa)
ndhHNAD(P)H-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (394 aa)
EKF01168.1Polyketide cyclase/dehydrase; KEGG: cyb:CYB_1214 0.93 purK; phosphoribosylaminoimidazole carboxylase ATPase subunit K01589; Psort location: Cytoplasmic, score: 8.96. (196 aa)
ndhKNADH dehydrogenase subunit B; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (245 aa)
ndhJNADH dehydrogenase, subunit C; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (174 aa)
ndhOHypothetical protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (71 aa)
EKF02864.1KEGG: ava:Ava_4787 2.1e-220 putative monovalent cation/H+ antiporter subunit D K05568:K05575; Psort location: CytoplasmicMembrane, score: 10.00. (461 aa)
EKF03486.1Hypothetical protein; KEGG: abc:ACICU_03555 0.34 ureidoglycolate hydrolase; K01483 ureidoglycolate hydrolase. (64 aa)
EKF03598.1Putative polyketide. (185 aa)
ndhMNADH dehydrogenase I subunit M; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (164 aa)
ndhANADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (372 aa)
ndhINADH-plastoquinone oxidoreductase, I subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (194 aa)
EKE99675.1NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. (216 aa)
EKF05888.1KEGG: ava:Ava_0749 4.7e-296 NAD(P)H-quinone oxidoreductase subunit F K05577; Psort location: CytoplasmicMembrane, score: 10.00. (619 aa)
EKF05885.1NAD(P)H-quinone oxidoreductase subunit M; KEGG: npu:Npun_F3688 1.8e-230 proton-translocating NADH-quinone oxidoreductase, chain M K05575; Psort location: CytoplasmicMembrane, score: 10.00. (499 aa)
ndhD-2Proton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (562 aa)
ndhCNADH dehydrogenase subunit A; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (120 aa)
EKF05651.1KEGG: mmu:69191 0.0063 Pdia2; protein disulfide isomerase associated 2 K09581; Psort location: CytoplasmicMembrane, score: 10.00. (330 aa)
ndhNHypothetical protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (158 aa)
EKF03810.1Hypothetical protein; KEGG: tel:tsr0706 1.1e-10 ndhL; NADH dehydrogenase subunit; K05583 NADH dehydrogenase I subunit L. (39 aa)
EKF03728.1NAD(P)H-quinone oxidoreductase subunit F; KEGG: npu:Npun_R6185 0. proton-translocating NADH-quinone oxidoreductase, chain L K05577; Psort location: CytoplasmicMembrane, score: 10.00. (699 aa)
ndhDProton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (524 aa)
ndhD-3Proton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (537 aa)
Your Current Organism:
Tolypothrix sp. PCC7601
NCBI taxonomy Id: 1188
Other names: Calothrix sp. PCC 7601, Fremyella diplosiphon ACMM 396, Fremyella diplosiphon IAM M-100, Fremyella diplosiphon UTEX B 481, Microchaete diplosiphon UTEX B 481, T. sp. PCC 7601, Tolypothrix (Calothrix) sp. PCC 7601, Tolypothrix sp. PCC 7601, Tolypothrix sp. PCC 7601 = UTEX B 481
Server load: low (28%) [HD]