Your Input: | |||||
EKF00710.1 | Hypothetical protein; KEGG: ava:Ava_2796 1.5e-61 NAD(P)H-quinone oxidoreductase subunit 4 K05575. (146 aa) | ||||
EKF00356.1 | NAD(P)H-quinone oxidoreductase subunit F; KEGG: npu:Npun_R4290 2.9e-287 NdhF3 family NAD(P)H dehydrogenase K05577; Psort location: CytoplasmicMembrane, score: 10.00. (618 aa) | ||||
EKF00357.1 | NAD(P)H-quinone oxidoreductase subunit D4; KEGG: npu:Npun_R4289 6.0e-225 proton-translocating NADH-quinone oxidoreductase, chain M K05575; Psort location: CytoplasmicMembrane, score: 10.00. (499 aa) | ||||
ndhB | Proton-translocating NADH-quinone oxidoreductase, chain; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (520 aa) | ||||
EKF00149.1 | Copper amine oxidase, N3 domain protein; KEGG: ava:Ava_3451 4.4e-277 tynA; tyramine oxidase K00276; Psort location: Cytoplasmic, score: 9.26. (659 aa) | ||||
ndhE | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (101 aa) | ||||
ndhH | NAD(P)H-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (394 aa) | ||||
EKF01168.1 | Polyketide cyclase/dehydrase; KEGG: cyb:CYB_1214 0.93 purK; phosphoribosylaminoimidazole carboxylase ATPase subunit K01589; Psort location: Cytoplasmic, score: 8.96. (196 aa) | ||||
ndhK | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. (245 aa) | ||||
ndhJ | NADH dehydrogenase, subunit C; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (174 aa) | ||||
ndhO | Hypothetical protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (71 aa) | ||||
EKF02864.1 | KEGG: ava:Ava_4787 2.1e-220 putative monovalent cation/H+ antiporter subunit D K05568:K05575; Psort location: CytoplasmicMembrane, score: 10.00. (461 aa) | ||||
EKF03486.1 | Hypothetical protein; KEGG: abc:ACICU_03555 0.34 ureidoglycolate hydrolase; K01483 ureidoglycolate hydrolase. (64 aa) | ||||
EKF03598.1 | Putative polyketide. (185 aa) | ||||
ndhM | NADH dehydrogenase I subunit M; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (164 aa) | ||||
ndhA | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (372 aa) | ||||
ndhI | NADH-plastoquinone oxidoreductase, I subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family. (194 aa) | ||||
EKE99675.1 | NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. (216 aa) | ||||
EKF05888.1 | KEGG: ava:Ava_0749 4.7e-296 NAD(P)H-quinone oxidoreductase subunit F K05577; Psort location: CytoplasmicMembrane, score: 10.00. (619 aa) | ||||
EKF05885.1 | NAD(P)H-quinone oxidoreductase subunit M; KEGG: npu:Npun_F3688 1.8e-230 proton-translocating NADH-quinone oxidoreductase, chain M K05575; Psort location: CytoplasmicMembrane, score: 10.00. (499 aa) | ||||
ndhD-2 | Proton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (562 aa) | ||||
ndhC | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (120 aa) | ||||
EKF05651.1 | KEGG: mmu:69191 0.0063 Pdia2; protein disulfide isomerase associated 2 K09581; Psort location: CytoplasmicMembrane, score: 10.00. (330 aa) | ||||
ndhN | Hypothetical protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (158 aa) | ||||
EKF03810.1 | Hypothetical protein; KEGG: tel:tsr0706 1.1e-10 ndhL; NADH dehydrogenase subunit; K05583 NADH dehydrogenase I subunit L. (39 aa) | ||||
EKF03728.1 | NAD(P)H-quinone oxidoreductase subunit F; KEGG: npu:Npun_R6185 0. proton-translocating NADH-quinone oxidoreductase, chain L K05577; Psort location: CytoplasmicMembrane, score: 10.00. (699 aa) | ||||
ndhD | Proton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (524 aa) | ||||
ndhD-3 | Proton-translocating NADH-quinone oxidoreductase, chain M; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (537 aa) |