Your Input: | |||||
guaB | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa) | ||||
A361_00115 | Deoxycytidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa) | ||||
tmk | dTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (208 aa) | ||||
tilS | tRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (462 aa) | ||||
A361_00420 | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (182 aa) | ||||
ftsH | Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. (663 aa) | ||||
glmS | Glutamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (600 aa) | ||||
guaA | Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (517 aa) | ||||
purE | 5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa) | ||||
purK | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (382 aa) | ||||
A361_01860 | Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (430 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa) | ||||
purS | Phosphoribosylformylglycinamidine synthase subunit PurS; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...] (84 aa) | ||||
purQ | Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (228 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (738 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (465 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (193 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (422 aa) | ||||
A361_01915 | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (581 aa) | ||||
A361_02645 | Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (544 aa) | ||||
A361_03330 | Short-chain dehydrogenase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (132 aa) | ||||
A361_03890 | Dihydroorotate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (591 aa) | ||||
A361_04700 | Uracil/xanthine transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (435 aa) | ||||
A361_05190 | 2',3'-cyclic-nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1188 aa) | ||||
A361_05370 | Gamma-glutamyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (593 aa) | ||||
A361_05445 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa) | ||||
A361_05820 | Glutathione peroxidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutathione peroxidase family. (158 aa) | ||||
A361_06645 | Guanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (431 aa) | ||||
carA | Carbamoyl-phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (359 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (1041 aa) | ||||
A361_07425 | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (318 aa) | ||||
A361_08510 | Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (527 aa) | ||||
glsA | Catalyzes the formation of glutamate from glutamine; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutaminase family. (310 aa) | ||||
pyrR | Bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (181 aa) | ||||
A361_09330 | Uracil permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa) | ||||
pyrB | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (312 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (428 aa) | ||||
carA-2 | Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (368 aa) | ||||
carB-2 | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1070 aa) | ||||
pyrK | Dihydroorotate dehydrogenase electron transfer subunit; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (259 aa) | ||||
pyrD | Dihydroorotate dehydrogenase B catalytic subunit; Catalyzes the conversion of dihydroorotate to orotate. (313 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (238 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (210 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (204 aa) | ||||
A361_10320 | Type I glutamate--ammonia ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa) | ||||
add | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (333 aa) | ||||
guaC | Guanosine monophosphate reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (329 aa) | ||||
A361_11340 | Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (313 aa) | ||||
ade | Peptidoglycan hydrolase; Internal stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (578 aa) | ||||
A361_12370 | Xanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (423 aa) | ||||
A361_12375 | Allantoinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (486 aa) | ||||
ade-2 | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (603 aa) | ||||
A361_13285 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (380 aa) | ||||
A361_16965 | tRNA-specific adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa) | ||||
A361_17350 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (101 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (286 aa) | ||||
A361_18380 | Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (319 aa) | ||||
deoD | Purine nucleoside phosphorylase DeoD-type; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
A361_18780 | Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (326 aa) | ||||
A361_18825 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (161 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (264 aa) | ||||
fhs | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (562 aa) | ||||
A361_19085 | Xanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (436 aa) | ||||
xpt | Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (200 aa) | ||||
deoA | Pyrimidine-nucleoside phosphorylase; Catalyzes the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa) | ||||
A361_19840 | Purine-nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (273 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (394 aa) | ||||
folD-2 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (291 aa) | ||||
gcvPB | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily. (486 aa) | ||||
gcvPA | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein. (448 aa) | ||||
gcvT | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (367 aa) | ||||
A361_20870 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (191 aa) | ||||
A361_21095 | Cytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (132 aa) | ||||
A361_21245 | Competence protein ComE; Derived by automated computational analysis using gene prediction method: Protein Homology. (187 aa) | ||||
udk | Uridine kinase; Functions in pyrimidine salvage; pyrimidine ribonucleoside kinase; phosphorylates nucleosides or dinucleosides to make UMP or CMP using ATP or GTP as the donor; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (170 aa) | ||||
A361_21735 | Bifunctional folylpolyglutamate synthase/dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (435 aa) | ||||
murI | Glutamate racemase; Provides the (R)-glutamate required for cell wall biosynthesis. (264 aa) | ||||
pepA | Leucyl aminopeptidase; Presumably involved in the processing and regular turnover of intracellular proteins. Catalyzes the removal of unsubstituted N- terminal amino acids from various peptides. (500 aa) | ||||
gcvH | Glycine cleavage system protein H; Is also involved in protein lipoylation via its role as an octanoyl/lipoyl carrier protein intermediate; Belongs to the GcvH family. (127 aa) | ||||
A361_24670 | Gamma-glutamyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (536 aa) | ||||
A361_25445 | Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (686 aa) | ||||
A361_25450 | Endonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology. (926 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (209 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (413 aa) | ||||
tdk | Thymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (535 aa) | ||||
A361_26730 | Guanine deaminase; Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia; Belongs to the metallo-dependent hydrolases superfamily. ATZ/TRZ family. (455 aa) | ||||
purA | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa) |