node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ALV40510.1 | ALV40513.1 | AU252_04465 | AU252_04480 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.999 |
ALV40510.1 | ALV40574.1 | AU252_04465 | AU252_04820 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.482 |
ALV40510.1 | ALV43406.1 | AU252_04465 | AU252_21375 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.692 |
ALV40510.1 | ALV43407.1 | AU252_04465 | AU252_21380 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.482 |
ALV40510.1 | ALV43412.1 | AU252_04465 | AU252_21405 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ubiquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.816 |
ALV40513.1 | ALV40510.1 | AU252_04480 | AU252_04465 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALV40513.1 | ALV40574.1 | AU252_04480 | AU252_04820 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.556 |
ALV40513.1 | ALV43406.1 | AU252_04480 | AU252_21375 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.722 |
ALV40513.1 | ALV43407.1 | AU252_04480 | AU252_21380 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.556 |
ALV40513.1 | ALV43412.1 | AU252_04480 | AU252_21405 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Ubiquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.912 |
ALV40513.1 | ALV43413.1 | AU252_04480 | AU252_21410 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.820 |
ALV40574.1 | ALV40510.1 | AU252_04820 | AU252_04465 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.482 |
ALV40574.1 | ALV40513.1 | AU252_04820 | AU252_04480 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.556 |
ALV40574.1 | ALV43406.1 | AU252_04820 | AU252_21375 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALV40574.1 | ALV43407.1 | AU252_04820 | AU252_21380 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.900 |
ALV40574.1 | ALV43412.1 | AU252_04820 | AU252_21405 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.987 |
ALV40574.1 | ALV43413.1 | AU252_04820 | AU252_21410 | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.980 |
ALV43406.1 | ALV40510.1 | AU252_21375 | AU252_04465 | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.692 |
ALV43406.1 | ALV40513.1 | AU252_21375 | AU252_04480 | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. | 0.722 |
ALV43406.1 | ALV40574.1 | AU252_21375 | AU252_04820 | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome ubiquinol oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.999 |