STRINGSTRING
CMV24_15920 CMV24_15920 GCA_000688275_00119 GCA_000688275_00119 RK21_00905 RK21_00905 CMV24_20045 CMV24_20045 pqqD pqqD CMV24_02335 CMV24_02335 nuoA nuoA nuoB nuoB nuoC nuoC CMV24_15915 CMV24_15915 RK21_00978 RK21_00978 nuoH nuoH nuoI nuoI CMV24_15895 CMV24_15895 nuoK nuoK CMV24_15885 CMV24_15885 CMV24_15880 CMV24_15880 nuoN nuoN
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CMV24_15920Unannotated protein. (165 aa)
GCA_000688275_00119Unannotated protein. (444 aa)
RK21_00905Unannotated protein. (201 aa)
CMV24_20045Unannotated protein. (519 aa)
pqqDUnannotated protein; Functions as a PqqA binding protein and presents PqqA to PqqE, in the pyrroloquinoline quinone (PQQ) biosynthetic pathway. (91 aa)
CMV24_02335Unannotated protein. (180 aa)
nuoAUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (137 aa)
nuoBUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (225 aa)
nuoCUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (593 aa)
CMV24_15915Unannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (454 aa)
RK21_00978Unannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (904 aa)
nuoHUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (335 aa)
nuoIUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (182 aa)
CMV24_15895Unannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa)
nuoKUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
CMV24_15885Unannotated protein. (617 aa)
CMV24_15880Unannotated protein. (510 aa)
nuoNUnannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (489 aa)
Your Current Organism:
Pseudomonas plecoglossicida
NCBI taxonomy Id: 1215115
Other names: P. plecoglossicida NBRC 103162 = DSM 15088, Pseudomonas plecoglossicida DSM 15088, Pseudomonas plecoglossicida DSM 15088 = NBRC 103162, Pseudomonas plecoglossicida NBRC 103162, Pseudomonas plecoglossicida NBRC 103162 = DSM 15088
Server load: low (36%) [HD]