STRINGSTRING
gcvT gcvT AII43617.1 AII43617.1 AII43637.1 AII43637.1 pdhA pdhA AII44025.1 AII44025.1 AII44165.1 AII44165.1 gcvP gcvP gcvH gcvH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gcvTGlycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. (368 aa)
AII43617.1Alanine--glyoxylate aminotransferase; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (393 aa)
AII43637.1Pyruvate dehydrogenase subunit beta; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. (327 aa)
pdhAPyruvate dehydrogenase E1 subunit alpha; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (327 aa)
AII44025.1Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (480 aa)
AII44165.1Branched-chain alpha-keto acid dehydrogenase subunit E2; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (446 aa)
gcvPGlycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (958 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (129 aa)
Your Current Organism:
Synechococcus sp. KORDI100
NCBI taxonomy Id: 1280380
Other names: S. sp. KORDI-100, Synechococcus sp. KORDI-100
Server load: low (26%) [HD]