STRINGSTRING
rplF rplF atpC atpC atpA_2 atpA_2 sigB sigB agrB agrB vraR vraR accD accD clpX clpX hemB hemB thyA thyA odhB odhB cspA cspA plsY plsY codY codY plsX plsX menD menD fabB fabB clpP clpP sarA sarA cspC cspC fus fus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplF50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (178 aa)
atpCATP synthase subunit C, AtpC; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (70 aa)
atpA_2ATP synthase subunit alpha, AtpA; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (502 aa)
sigBRNA polymerase sigma factor SigB; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (256 aa)
agrBAccessory gene regulator B; Essential for the production of a quorum sensing system signal molecule, the autoinducing peptide (AIP). This quorum sensing system is responsible for the regulation of the expression of virulence factor genes. Involved in the proteolytic processing of AgrD, the precursor of AIP; Belongs to the AgrB family. (188 aa)
vraRLuxR family two component transcriptional regulator. (209 aa)
accDAcetyl-coenzyme A carboxylase carboxyl transferase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (288 aa)
clpXATP-dependent Clp protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. (420 aa)
hemBDelta-aminolevulinic acid dehydratase; Belongs to the ALAD family. (324 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (318 aa)
odhBDihydrolipoamide succinyltransferase E2 component of 2-oxoglutarate dehydrogenase complex; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (423 aa)
cspACold-shock DNA-binding domain protein. (66 aa)
plsYGlycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (202 aa)
codYGTP-sensing transcriptional pleiotropic repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. (257 aa)
plsXGlycerol-3-phosphate acyltransferase PlsX; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (328 aa)
menD2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-carboxylate synthase; Catalyzes the thiamine diphosphate-dependent decarboxylation of 2-oxoglutarate and the subsequent addition of the resulting succinic semialdehyde-thiamine pyrophosphate anion to isochorismate to yield 2- succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC). Belongs to the TPP enzyme family. MenD subfamily. (556 aa)
fabB3-oxoacyl-(acyl carrier protein) synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. (414 aa)
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (195 aa)
sarAStaphylococcal accessory regulator family protein. (124 aa)
cspCCold-shock DNA-binding domain protein, CspC. (67 aa)
fusTranslational elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 [...] (694 aa)
Your Current Organism:
Staphylococcus haemolyticus
NCBI taxonomy Id: 1283
Other names: ATCC 29970, CCM 2737, CCUG 7323, CIP 81.56, DSM 20263, JCM 2416, LMG 13349, LMG:13349, NCTC 11042, NRRL B-14755, S. haemolyticus
Server load: low (18%) [HD]