node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AFZ49993.1 | AFZ51311.1 | Dacsa_1297 | Dacsa_2736 | PFAM: Photosynthetic reaction centre protein; TIGRFAM: photosystem II, DI subunit (also called Q(B)). | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | 0.976 |
AFZ49993.1 | psbD | Dacsa_1297 | Dacsa_0345 | PFAM: Photosynthetic reaction centre protein; TIGRFAM: photosystem II, DI subunit (also called Q(B)). | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.966 |
AFZ49993.1 | psbD-2 | Dacsa_1297 | Dacsa_1629 | PFAM: Photosynthetic reaction centre protein; TIGRFAM: photosystem II, DI subunit (also called Q(B)). | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.966 |
AFZ51311.1 | AFZ49993.1 | Dacsa_2736 | Dacsa_1297 | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | PFAM: Photosynthetic reaction centre protein; TIGRFAM: photosystem II, DI subunit (also called Q(B)). | 0.976 |
AFZ51311.1 | psbA | Dacsa_2736 | Dacsa_0484 | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.984 |
AFZ51311.1 | psbA-2 | Dacsa_2736 | Dacsa_1746 | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.984 |
AFZ51311.1 | psbD | Dacsa_2736 | Dacsa_0345 | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.999 |
AFZ51311.1 | psbD-2 | Dacsa_2736 | Dacsa_1629 | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.999 |
psbA | AFZ51311.1 | Dacsa_0484 | Dacsa_2736 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | 0.984 |
psbA | psbA-2 | Dacsa_0484 | Dacsa_1746 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.900 |
psbA | psbD | Dacsa_0484 | Dacsa_0345 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.996 |
psbA | psbD-2 | Dacsa_0484 | Dacsa_1629 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.996 |
psbA-2 | AFZ51311.1 | Dacsa_1746 | Dacsa_2736 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | 0.984 |
psbA-2 | psbA | Dacsa_1746 | Dacsa_0484 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.900 |
psbA-2 | psbD | Dacsa_1746 | Dacsa_0345 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.996 |
psbA-2 | psbD-2 | Dacsa_1746 | Dacsa_1629 | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | 0.996 |
psbD | AFZ49993.1 | Dacsa_0345 | Dacsa_1297 | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | PFAM: Photosynthetic reaction centre protein; TIGRFAM: photosystem II, DI subunit (also called Q(B)). | 0.966 |
psbD | AFZ51311.1 | Dacsa_0345 | Dacsa_2736 | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | PFAM: Manganese-stabilising protein / photosystem II polypeptide. | 0.999 |
psbD | psbA | Dacsa_0345 | Dacsa_0484 | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.996 |
psbD | psbA-2 | Dacsa_0345 | Dacsa_1746 | Photosystem II DII subunit, Q(A) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII c [...] | Photosystem II DI subunit, Q(B) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. | 0.996 |