STRINGSTRING
ccsA ccsA atpA atpA atpE atpE rplB rplB rplP rplP clpP clpP clpP-2 clpP-2 AFZ49123.1 AFZ49123.1 AFZ49759.1 AFZ49759.1 clpP-3 clpP-3 rplT rplT psbN psbN psbF psbF psbL psbL petB petB clpP-4 clpP-4 AFZ51768.1 AFZ51768.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ccsACytochrome c-type biogenesis protein CcsB; Required during biogenesis of c-type cytochromes (cytochrome c6 and cytochrome f) at the step of heme attachment. (330 aa)
atpAProton translocating ATP synthase, F1 alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (506 aa)
atpEATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa)
rplBRibosomal protein L2, bacterial/organellar; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (275 aa)
rplPRibosomal protein L16, bacterial/organelle; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (136 aa)
clpPProtease subunit of ATP-dependent protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (200 aa)
clpP-2Protease subunit of ATP-dependent protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (228 aa)
AFZ49123.13-oxoacyl-(acyl-carrier-protein) reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (250 aa)
AFZ49759.1Nitrate/nitrite transporter; PFAM: Major Facilitator Superfamily. (417 aa)
clpP-3ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (199 aa)
rplTRibosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (116 aa)
psbNPhotosystem II reaction centre N protein (psbN); May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (43 aa)
psbFCytochrome b559, beta subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (44 aa)
psbLPsbL protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (40 aa)
petBCytochrome b subunit of the bc complex; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (222 aa)
clpP-4ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (217 aa)
AFZ51768.1PFAM: Major Facilitator Superfamily; TIGRFAM: nitrite extrusion protein (nitrite facilitator). (502 aa)
Your Current Organism:
Dactylococcopsis salina
NCBI taxonomy Id: 13035
Other names: D. salina PCC 8305, Dactylococcopsis salina PCC 8305, Dactylococcopsis sp. PCC 8305, Myxobactron salinum PCC 8305
Server load: low (16%) [HD]