STRINGSTRING
AKZ51338.1 AKZ51338.1 AKZ49602.1 AKZ49602.1 purF purF PurM PurM purD purD purE purE purK purK purB purB PurA PurA gmk gmk apt apt guaC guaC xpt xpt AKZ50334.1 AKZ50334.1 guaA guaA guaB guaB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AKZ51338.1Phosphoribosylaminoimidazole-succinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa)
AKZ49602.1Phosphoribosylformylglycinamidine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1241 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (484 aa)
PurMPhosphoribosylaminoimidazole synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (340 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (421 aa)
purEPhosphoribosyl carboxyaminoimidazole mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (163 aa)
purKPhosphoribosylaminoimidazole carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (357 aa)
purBAdenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
PurAAdenylosuccinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (211 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (172 aa)
guaCGuanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 2 subfamily. (327 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (193 aa)
AKZ50334.1Xanthine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (427 aa)
guaAGMP synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (520 aa)
guaBInosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (493 aa)
Your Current Organism:
Streptococcus pyogenes
NCBI taxonomy Id: 1314
Other names: ATCC 12344, CCUG 12701, CCUG 4207, CIP 56.41, DSM 20565, JCM 5674, LMG 14700, LMG:14700, Micrococcus scarlatinae, NCAIM B.01705, NCTC 8198, S. pyogenes, Streptococcus erysipelatos, Streptococcus hemolyticus, Streptococcus scarlatinae
Server load: low (34%) [HD]