Your Input: | |||||
pyrR | Phosphoribosyl transferase; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant; Belongs to the purine/pyrimidine phosphoribosyltransferase family. PyrR subfamily. (173 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (212 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
PurA | Adenylosuccinate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology. (449 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (427 aa) | ||||
Fba | Fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and glyceraldehyde 3-phosphate from fructose 1,6, bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (293 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (398 aa) | ||||
glnA | Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (448 aa) | ||||
pflB | Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (775 aa) | ||||
codY | Transcriptional repressor CodY; DNA-binding protein that represses the expression of many genes that are induced as cells make the transition from rapid exponential growth to stationary phase. It is a GTP-binding protein that senses the intracellular GTP concentration as an indicator of nutritional limitations. At low GTP concentration it no longer binds GTP and stop to act as a transcriptional repressor; Belongs to the CodY family. (260 aa) | ||||
AKZ49994.1 | DEAD/DEAH box helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (447 aa) | ||||
pepC | Derived by automated computational analysis using gene prediction method: Protein Homology. (445 aa) | ||||
luxS | S-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD) (By similarity); Belongs to the LuxS family. (160 aa) | ||||
PheT | phenylalanyl-tRNA synthase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (801 aa) | ||||
pepT | Derived by automated computational analysis using gene prediction method: Protein Homology. (407 aa) | ||||
apbA | 2-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (307 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (403 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (209 aa) | ||||
rfbA | Glucose-1-phosphate thymidylyltransferase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Belongs to the glucose-1-phosphate thymidylyltransferase family. (289 aa) | ||||
ldh | Lactate dehydrogenase; Catalyzes the conversion of lactate to pyruvate. Belongs to the LDH/MDH superfamily. LDH family. (327 aa) | ||||
guaA | GMP synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (520 aa) | ||||
PepN | Derived by automated computational analysis using gene prediction method: Protein Homology. (845 aa) | ||||
pyk | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (500 aa) | ||||
DeaD2 | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (361 aa) | ||||
sodA | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems. (201 aa) | ||||
DeaD | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. (539 aa) | ||||
ileS | isoleucine--tRNA ligase; IleRS; catalyzes the formation of isoleucyl-tRNA(Ile) from isoleucine and tRNA(Ile); since isoleucine and other amino acids such as valine are similar, there are additional editing function in this enzyme; one is involved in hydrolysis of activated valine-AMP and the other is involved in deacylation of mischarged Val-tRNA(Ile); there are two active sites, one for aminoacylation and one for editing; class-I aminoacyl-tRNA synthetase family type 1 subfamily; some organisms carry two different copies of this enzyme; Derived by automated computational analysis usin [...] (933 aa) | ||||
ftsZ | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (439 aa) | ||||
murD | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (452 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (252 aa) | ||||
thrS | threonyl-tRNA synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (647 aa) | ||||
PepQ | Dipeptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (361 aa) | ||||
frr | Ribosome-recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (242 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (160 aa) | ||||
PflD | Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (805 aa) | ||||
cspA | Cold-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (67 aa) | ||||
ArgS | arginine--tRNA ligase; Catalyzes a two-step reaction, first charging an arginine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; class-I aminoacyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa) | ||||
guaB | Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (493 aa) |