node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
atpB | atpE | A6J72_08800 | A6J72_08795 | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.997 |
atpB | atpF | A6J72_08800 | A6J72_08805 | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |
atpB | ntpK | A6J72_08800 | A6J72_04740 | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | 0.984 |
atpE | atpB | A6J72_08795 | A6J72_08800 | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.997 |
atpE | atpF | A6J72_08795 | A6J72_08805 | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.991 |
atpE | ntpK | A6J72_08795 | A6J72_04740 | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | 0.432 |
atpF | atpB | A6J72_08805 | A6J72_08800 | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.999 |
atpF | atpE | A6J72_08805 | A6J72_08795 | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.991 |
atpF | ntpK | A6J72_08805 | A6J72_04740 | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | 0.952 |
ntpK | atpB | A6J72_04740 | A6J72_08800 | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.984 |
ntpK | atpE | A6J72_04740 | A6J72_08795 | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.432 |
ntpK | atpF | A6J72_04740 | A6J72_08805 | V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the V-ATPase proteolipid subunit family. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.952 |