STRINGSTRING
atpD atpD atpF atpF atpH atpH atpC atpC atpG atpG atpA atpA ntpD ntpD ntpB ntpB ntpA ntpA ntpG ntpG ARC26583.1 ARC26583.1 atpE atpE atpB atpB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (468 aa)
atpFATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa)
atpHF0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa)
atpCF0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa)
atpGF0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (292 aa)
atpAF0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (501 aa)
ntpDV-type ATP synthase subunit D; Produces ATP from ADP in the presence of a proton gradient across the membrane. (207 aa)
ntpBV-type ATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit. (463 aa)
ntpAV-type ATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family. (596 aa)
ntpGV-type ATP synthase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. (107 aa)
ARC26583.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (196 aa)
atpEF0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (66 aa)
atpBF0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (237 aa)
Your Current Organism:
Streptococcus intermedius
NCBI taxonomy Id: 1338
Other names: ATCC 27335, CCUG 17827, CCUG 32759, CIP 103248, DSM 20573, JCM 12996, LMG 17840, LMG:17840, NCDO 2227, NCTC 11324, S. intermedius, VPI 3372A, strain SK 54, strain SK54
Server load: low (22%) [HD]