STRINGSTRING
atpH atpH guaB guaB accC accC accD accD accA accA coaE coaE APD32021.1 APD32021.1 atpB atpB atpF atpF atpA atpA atpG atpG atpD atpD atpC atpC APD31865.1 APD31865.1 xpt xpt guaA guaA APD31777.1 APD31777.1 coaC coaC coaA coaA APD31658.1 APD31658.1 dacA dacA APD31640.1 APD31640.1 APD31638.1 APD31638.1 apt apt APD31447.1 APD31447.1 coaD coaD APD31217.1 APD31217.1 APD31194.1 APD31194.1 purA purA ackA ackA adk adk APD31021.1 APD31021.1 hpt hpt
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpHF0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (493 aa)
accCacetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (454 aa)
accDacetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (288 aa)
accAacetyl-CoA carboxylase carboxyl transferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (256 aa)
coaEdephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (203 aa)
APD32021.1F0F1 ATP synthase subunit C; Derived by automated computational analysis using gene prediction method: Protein Homology. (65 aa)
atpBF0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (237 aa)
atpFATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa)
atpAF0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (501 aa)
atpGF0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (291 aa)
atpDF0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (468 aa)
atpCF0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (138 aa)
APD31865.1GTP pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (223 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (193 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (520 aa)
APD31777.1Phosphopantothenate--cysteine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (229 aa)
coaCPhosphopantothenoylcysteine decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (181 aa)
coaAType I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (306 aa)
APD31658.1Nucleoside-diphosphate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (140 aa)
dacATIGR00159 family protein; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria. (281 aa)
APD31640.1Iron ABC transporter ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa)
APD31638.1Pyruvate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (172 aa)
APD31447.1NUDIX hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (163 aa)
APD31217.1GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (739 aa)
APD31194.1DNA topology modulation protein FlaR; Derived by automated computational analysis using gene prediction method: Protein Homology. (168 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (430 aa)
ackAAcetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (398 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (212 aa)
APD31021.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (430 aa)
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (180 aa)
Your Current Organism:
Streptococcus iniae
NCBI taxonomy Id: 1346
Other names: ATCC 29178, CCUG 27303, CIP 102508, DSM 20576, LMG 14520, LMG:14520, S. iniae, Streptococcus shiloi, strain PW
Server load: low (14%) [HD]